Enabling More Accurate Bounding Boxes for Deep Learning-Based Real-Time Human Detection

Author(s):  
Hyunsu Jeong ◽  
Jeonghwan Gwak ◽  
Cheolbin Park ◽  
Manish Khare ◽  
Om Prakash ◽  
...  
2021 ◽  
Vol 7 (8) ◽  
pp. 145
Author(s):  
Antoine Mauri ◽  
Redouane Khemmar ◽  
Benoit Decoux ◽  
Madjid Haddad ◽  
Rémi Boutteau

For smart mobility, autonomous vehicles, and advanced driver-assistance systems (ADASs), perception of the environment is an important task in scene analysis and understanding. Better perception of the environment allows for enhanced decision making, which, in turn, enables very high-precision actions. To this end, we introduce in this work a new real-time deep learning approach for 3D multi-object detection for smart mobility not only on roads, but also on railways. To obtain the 3D bounding boxes of the objects, we modified a proven real-time 2D detector, YOLOv3, to predict 3D object localization, object dimensions, and object orientation. Our method has been evaluated on KITTI’s road dataset as well as on our own hybrid virtual road/rail dataset acquired from the video game Grand Theft Auto (GTA) V. The evaluation of our method on these two datasets shows good accuracy, but more importantly that it can be used in real-time conditions, in road and rail traffic environments. Through our experimental results, we also show the importance of the accuracy of prediction of the regions of interest (RoIs) used in the estimation of 3D bounding box parameters.


Author(s):  
P. J. Baeck ◽  
N. Lewyckyj ◽  
B. Beusen ◽  
W. Horsten ◽  
K. Pauly

<p><strong>Abstract.</strong> Detection of humans, e.g. for search and rescue operations has been enabled by the availability of compact, easy to use cameras and drones. On the other hand, aerial photogrammetry techniques for inspection applications allow for precise geographic localization and the generation of an overview orthomosaic and 3D terrain model. The proposed solution is based on nadir drone imagery and combines both deep learning and photogrammetric algorithms to detect people and position them with geographical coordinates on an overview orthomosaic and 3D terrain map. The drone image processing chain is fully automated and near real-time and therefore allows search and rescue teams to operate more efficiently in difficult to reach areas.</p>


2020 ◽  
Vol 17 (1) ◽  
pp. 68-73
Author(s):  
M. Hemaanand ◽  
V. Sanjay Kumar ◽  
R. Karthika

With the evolution of technology ensuring people for their safety and security all around the time constantly is a big challenge. We propose an advanced technique based on deep learning and artificial intelligence platform that can monitor the people, their homes and their surroundings providing them a quantifiable increase in security. We have surveillance cameras in our homes for video capture as well as security purposes. Our proposed technique is to detect and classify as well as inform the user if there is any breach in security of the classified object using the cameras by implementing deep learning techniques and the technology of internet of things. It can serve as a perimeter monitoring and intruder alert system in smart surveillance environment. This paper provides a well-defined structure for live stream data analysis. It overcomes the challenge of static closed circuit cameras television as it serves as a motion based tracking system and monitors events in real time to ensure activities are limited to specific persons within authorized areas. It has the advantage of creating multiple bounding boxes to track down the objects which could be any living or non-living thing based on the trained modules. The trespasser or intruder can be efficiently detected using the CCTV camera surveillance which is being supported by the real-time object classifier algorithm at the intermediate module. The proposed method is mainly supported by the real time object detection and classification which is implemented using Mobile Net and Single shot detector.


2021 ◽  
Author(s):  
Samah A. F. Manssor ◽  
Shaoyuan Sun ◽  
Mohammed Abdalmajed ◽  
Shima Ali

Abstract Human detection is a technology that detects pre-determined human shapes in the image and ignores everything else, which plays an irreplaceable role in video surveillance. However, modern person detectors have some inefficiencies in detecting pedestrians at night, and the accuracy rate is still insufficient. This paper presents a novel practical model for automatic real-time human detection at night-time. For this purpose, a new network architecture was proposed by improving the ting-yolov3 network for detecting pedestrians from TIR images based on the YOLO algorithm's tasks. The K-means clustering method clusters the image data, which contributes to obtaining excellent priority bounding-boxes. The proposed network was pre-trained on the original COCO dataset to obtain the initial weights. Through the comparison with the other three methods on the FLIR and DHU Night datasets showed that the proposed method performance was outperformed, in addition, to achieve a high score of accuracy (mAP%) in the TIR images. The method has a delay in detection time of 4.88ms. By improving the performance rates of human detection in TIR images, we expect this research to detect intruders in the night surveillance system.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


Sign in / Sign up

Export Citation Format

Share Document