Research on the Verification and Validation Method of Safety Analysis Software in Nuclear Power Plants

Author(s):  
Ya-Nan He ◽  
Wei Xiong ◽  
Peng-Fei Gu ◽  
Jian-Zhong Tang
1998 ◽  
Vol 183 (1-2) ◽  
pp. 117-132 ◽  
Author(s):  
Akira Fukumoto ◽  
Toshifumi Hayashi ◽  
Hiroshi Nishikawa ◽  
Hiroshi Sakamoto ◽  
Teruaki Tomizawa ◽  
...  

Author(s):  
Steve Yang ◽  
Jun Ding ◽  
Huifang Miao ◽  
Jianxiang Zheng

All 1000 MW nuclear power plants currently in construction or projected to-be-built in China will use the digital instrumentation and control (I&C) systems. Safety and reliability are the ultimate concern for the digital I&C systems. To obtain high confidence in the safety of digital I&C systems, rigorous software verification and validation (V&V) life-cycle methodologies are necessary. The V&V life-cycle process ensures that the requirements of the system and software are correct, complete, and traceable; that the requirements at the end of each life-cycle phase fulfill the requirements imposed by the previous phase; and the final product meets the user-specified requirements. The V&V process is best illustrated via the so-called V-model. This paper describes the V-model in detail by some examples. Through the examples demonstration, it is shown that the process detailed in the V-model is consistent with the IEEE Std 1012-1998, which is endorsed by the US Regulatory Guide 1.168-2004. The examples show that the V-model process detailed in this paper provides an effective V&V approach for digital I&C systems used in nuclear power plants. Additionally, in order to obtain a qualitative mathematical description of the V-model, we study its topological structure in graph theory. This study confirms the rationality of the V-model. Finally, the V&V approach affording protection against common-cause failure from design deficiencies, and manufacturing errors is explored. We conclude that rigorous V&V activities using the V-model are creditable in reducing the risk of common-cause failures.


Author(s):  
S. Herstead ◽  
M. de Vos ◽  
S. Cook

The success of any new build project is reliant upon all stakeholders — applicants, vendors, contractors and regulatory agencies — being ready to do their part. Over the past several years, the Canadian Nuclear Safety Commission (CNSC) has been working to ensure that it has the appropriate regulatory framework and internal processes in place for the timely and efficient licensing of all types of reactor, regardless of size. This effort has resulted in several new regulatory documents and internal processes including pre-project vendor design reviews. The CNSC’s general nuclear safety objective requires that nuclear facilities be designed and operated in a manner that will protect the health, safety and security of persons and the environment from unreasonable risk, and to implement Canada’s international commitments on the peaceful use of nuclear energy. To achieve this objective, the regulatory approach strikes a balance between pure performance-based regulation and prescriptive-based regulation. By utilizing this approach, CNSC seeks to ensure a regulatory environment exists that encourages innovation within the nuclear industry without compromising the high standards necessary for safety. The CNSC is applying a technology neutral approach as part of its continuing work to update its regulatory framework and achieve clarity of its requirements. A reactor power threshold of approximately 200 MW(th) has been chosen to distinguish between large and small reactors. It is recognized that some Small Modular Reactors (SMRs) will be larger than 200 MW(th), so a graded approach to achieving safety is still possible even though Nuclear Power Plant design and safety requirements will apply. Design requirements for large reactors are established through two main regulatory documents. These are RD-337 Design for New Nuclear Power Plants, and RD-310 Safety Analysis for Nuclear Power Plants. For reactors below 200 MW(th), the CNSC allows additional flexibility in the use of a graded approach to achieving safety in two new regulatory documents: RD-367 Design of Small Reactors and RD-308 Deterministic Safety Analysis for Small Reactors. The CNSC offers a pre-licensing vendor design review as an optional service for reactor facility designs. This review process is intended to provide early identification and resolution of potential regulatory or technical issues in the design process, particularly those that could result in significant changes to the design or analysis. The process aims to increase regulatory certainty and ultimately contribute to public safety. This paper outlines the CNSC’s expectations for applicant and vendor readiness and discusses the process for pre-licensing reviews which allows vendors and applicants to understand their readiness for licensing.


Sign in / Sign up

Export Citation Format

Share Document