Base Force Element Method for Nonlinear Problems of Materials

Author(s):  
Yijiang Peng ◽  
Yinghua Liu
2021 ◽  
Vol 42 (8) ◽  
pp. 785-793
Author(s):  
GONG Linqi ◽  
◽  
◽  
CHEN Xiyun ◽  
GUO Qing ◽  
...  

Author(s):  
Keijo Ruotsalainen

AbstractRecently in several papers the boundary element method has been applied to non-linear problems. In this paper we extend the analysis to strongly nonlinear boundary value problems. We shall prove the convergence and the stability of the Galerkin method in Lp spaces. Optimal order error estimates in Lp space then follow. We use the theory of A-proper mappings and monotone operators to prove convergence of the method. We note that the analysis includes the u4 -nonlinearity, which is encountered in heat radiation problems.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668407
Author(s):  
Yihuan Zhu ◽  
Guojian Shao ◽  
Jingbo Su ◽  
Ang Li

In this article, the dependency between different elements in solid structures is considered and a substructure-based interval finite element method is used to model the interval properties. The penalty method is applied to impose the necessary constraints for compatibility. In order to obtain the interval stresses, an approximation solution based on the Taylor expansion method is presented. Then, the proposed interval substructure model is expanded to nonlinear problems. In consideration of the nonlinear property of the elasticity modulus, an interval elastoplastic substructure analysis method using constant matrix based on the incremental theory is proposed and the interval expression of the interval stress updated formation is derived. Finally, numerical examples are carried out to demonstrate the reasonability and feasibility of the proposed method and evaluation system.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yijiang Peng ◽  
Yao Wang ◽  
Qing Guo ◽  
Junhua Ni

The base force element method (BFEM) on damage mechanics is used to analyze the compressive strength, the size effects of compressive strength, and fracture process of concrete at mesolevel. The concrete is taken as three-phase composites consisting of coarse aggregate, hardened cement mortar, and interfacial transition zone (ITZ) on mesolevel. The random aggregate model is used to simulate the mesostructure of concrete. The mechanical properties and fracture process of concrete under uniaxial compression loading are simulated using the BFEM on damage mechanics. The simulation results agree with the test results. This analysis method is the new way for investigating fracture mechanism and numerical simulation of mechanical properties for concrete.


Sign in / Sign up

Export Citation Format

Share Document