Geometrical nonlinear problems of truss beam by base force element method

Author(s):  
Yijiang Peng ◽  
Zhonghai Li ◽  
Mahmoud M. A. Kamel
2021 ◽  
Vol 42 (8) ◽  
pp. 785-793
Author(s):  
GONG Linqi ◽  
◽  
◽  
CHEN Xiyun ◽  
GUO Qing ◽  
...  

2013 ◽  
Vol 675 ◽  
pp. 158-161
Author(s):  
Lv Zhou Ma ◽  
Jian Liu ◽  
Yu Qin Yan ◽  
Xun Lin Diao

Based on positional finite element method (FEM), a new, simple and accurate lumped mass matrix to solve dynamic geometrical nonlinear problems of materials applied to variable cross-section beam element has been proposed. According to Hamilton theory and the concept of Kinetic energy, concentrate the beam element mass to the two nodes in certain proportion, the lumped mass matrix is deduced. The lumped mass matrix is diagonal matrix and its calculated quantity is less than using consistent mass matrix about properties of materials under the same calculation precision.


Author(s):  
Keijo Ruotsalainen

AbstractRecently in several papers the boundary element method has been applied to non-linear problems. In this paper we extend the analysis to strongly nonlinear boundary value problems. We shall prove the convergence and the stability of the Galerkin method in Lp spaces. Optimal order error estimates in Lp space then follow. We use the theory of A-proper mappings and monotone operators to prove convergence of the method. We note that the analysis includes the u4 -nonlinearity, which is encountered in heat radiation problems.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668407
Author(s):  
Yihuan Zhu ◽  
Guojian Shao ◽  
Jingbo Su ◽  
Ang Li

In this article, the dependency between different elements in solid structures is considered and a substructure-based interval finite element method is used to model the interval properties. The penalty method is applied to impose the necessary constraints for compatibility. In order to obtain the interval stresses, an approximation solution based on the Taylor expansion method is presented. Then, the proposed interval substructure model is expanded to nonlinear problems. In consideration of the nonlinear property of the elasticity modulus, an interval elastoplastic substructure analysis method using constant matrix based on the incremental theory is proposed and the interval expression of the interval stress updated formation is derived. Finally, numerical examples are carried out to demonstrate the reasonability and feasibility of the proposed method and evaluation system.


Sign in / Sign up

Export Citation Format

Share Document