Development of an MR-Compatible High-Definition Flexible Endoscope for Real-Time MR Image-Guided Microwave Ablation

Author(s):  
Atsushi Yamada ◽  
Shigeyuki Naka ◽  
Khiem Tran Dang ◽  
Shigehiro Morikawa ◽  
Tohru Tani
Author(s):  
M. Hashizume ◽  
T. Yasunaga ◽  
K. Tanoue ◽  
S. Ieiri ◽  
K. Konishi ◽  
...  

2003 ◽  
Vol 4 (4) ◽  
pp. 345-350
Author(s):  
Shigehiro Morikawa ◽  
Toshiro Inubushi ◽  
Yoshimasa Kurumi ◽  
Shigeyuki Naka ◽  
Koichiro Sato ◽  
...  

2002 ◽  
Vol 4 (1) ◽  
pp. 27-33
Author(s):  
Shigehiro Morikawa ◽  
Toshiro Inubushi ◽  
Yoshimasa Kurumi ◽  
Shigeyuki Naka ◽  
Koichiro Sato ◽  
...  

2019 ◽  
Vol 4 (2) ◽  
pp. 356-362
Author(s):  
Jennifer W. Means ◽  
Casey McCaffrey

Purpose The use of real-time recording technology for clinical instruction allows student clinicians to more easily collect data, self-reflect, and move toward independence as supervisors continue to provide continuation of supportive methods. This article discusses how the use of high-definition real-time recording, Bluetooth technology, and embedded annotation may enhance the supervisory process. It also reports results of graduate students' perception of the benefits and satisfaction with the types of technology used. Method Survey data were collected from graduate students about their use and perceived benefits of advanced technology to support supervision during their 1st clinical experience. Results Survey results indicate that students found the use of their video recordings useful for self-evaluation, data collection, and therapy preparation. The students also perceived an increase in self-confidence through the use of the Bluetooth headsets as their supervisors could provide guidance and encouragement without interrupting the flow of their therapy sessions by entering the room to redirect them. Conclusions The use of video recording technology can provide opportunities for students to review: videos of prospective clients they will be treating, their treatment videos for self-assessment purposes, and for additional data collection. Bluetooth technology provides immediate communication between the clinical educator and the student. Students reported that the result of that communication can improve their self-confidence, perceived performance, and subsequent shift toward independence.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A422-A422
Author(s):  
Ravi Murthy ◽  
Rahul Sheth ◽  
Alda Tam ◽  
Sanjay Gupta ◽  
Vivek Subbiah ◽  
...  

BackgroundImage guided intra-tumor administration of investigational immunotherapeutic agents represents an expanding field of interest. We present a retrospective review of the safety, feasibility & technical nuances of real-time image guidance for injection & biopsy across a spectrum of extracranial solid malignancies utilizing the discipline of Interventional Radiology.MethodsPatients who were enrolled in image guided intratumoral immunotherapy injection (ITITI) clinical trials over a 6 year period (2013–19) at a single tertiary care cancer center were included in this analysis. Malignancy, location, imaging guidance utilized for ITITI & biopsy for injected (adscopal) & non-injected (abscopal) lesions were determined and categorized. Peri-procedural adverse events were noted.Results262 pts (146 female, 61 yrs median) participating in 29 immunotherapeutic clinical trials (TLR & STING agonists, gene therapy, anti CD-40, viral/bacterial/metabolic oncolytics) met study criteria. Malignancies included melanoma 88, sarcoma 32, colorectal 29, breast 23, lung 17, head & neck 15, ovarian 8, neuroendocrine 7, pancreatic adenocarcinoma 6, 3 each (cholangioCA, endometrial, bladder, GI tract), 2 each (RCC, thymicCA, lymphoma, merkel cell, prostate) & others 1 each (CUP, GIST, dermatofibrosarcoma, DSRT, neuroblastoma, thyroid). All 169 & 93 patients received the intended 1371 ITITI in parietal (abdominal/chest wall, extremity, neck, pelvis) or visceral (liver, lung, peritoneum, adrenal) locations respectively; 83 patients received lymph node injections within either location. Imaging guidance was US in 68% of the cohort (US 161, CT+US 19); CT was used in 30% (81) & MRI in 1 patient. Median diameter of the ITITI lesion was 32 mm (8–230 mm). Median volume of the ITITI therapeutic material/session was 2 ml (1–6.9 ml). Lesions were accessed using a coaxial technique. ITITI delivery needles used at operator preference & tailored to lesion characteristics were either a 21G/22G Chiba, 21G Profusion (Cook Medical), 22G Morrison (AprioMed), 25G hypodermic (BD) & 18G Quadrafuse (Rex Medical). 2840 core biopsies (>18G Tru-cut core, Mission, Bard Medical) were performed in 237 patients during 690 procedures; biopsy sessions were often concurrent & of the ITITI site. 137 patients also underwent biopsy of a non-ITITI site (89 parietal location). Dimensions of the non-ITITI lesion were median 10 mm (7–113 mm); US image guidance was used in 97 patients (72%) to obtain a total of 1257, >18G Tru-core samples. 1.3% of injections resulted in SAE (NCI CTC AE >3) and 0.5% of 4097 biopsies developed major complications (SIR Criteria); both categories were manageable.ConclusionsUtilizing real time image guidance, ITITI to the administration of a myriad of investigational immunotherapeutic agents with concomitant biopsy procedures to date are associated with a high technical success rate & favorable safety profile.AcknowledgementsJoshua Hein, Mara Castaneda, Jyotsna Pera, Yunfang Jiang,Shuang Liu, Holly Liu and Anna LuiTrial RegistrationN/AEthics ApprovalThe study was approved by Institution’s Ethics Board, approval number 2020-0536: A retrospective study to determine the safety, feasibility and technical challenges of real-time image guidance for intra-tumor injection and biopsy across multiple solid tumors.Consent2020-0536 Waiver of Informed ConsentReferenceSheth RA, Murthy R, Hong DS, et al. Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer. JAMA Netw Open 2020;3(7):e207911. doi:10.1001/jamanetworkopen.2020.7911


2021 ◽  
pp. 1-11
Author(s):  
Tingting Zhao ◽  
Xiaoli Yi ◽  
Zhiyong Zeng ◽  
Tao Feng

YTNR (Yunnan Tongbiguan Nature Reserve) is located in the westernmost part of China’s tropical regions and is the only area in China with the tropical biota of the Irrawaddy River system. The reserve has abundant tropical flora and fauna resources. In order to realize the real-time detection of wild animals in this area, this paper proposes an improved YOLO (You only look once) network. The original YOLO model can achieve higher detection accuracy, but due to the complex model structure, it cannot achieve a faster detection speed on the CPU detection platform. Therefore, the lightweight network MobileNet is introduced to replace the backbone feature extraction network in YOLO, which realizes real-time detection on the CPU platform. In response to the difficulty in collecting wild animal image data, the research team deployed 50 high-definition cameras in the study area and conducted continuous observations for more than 1,000 hours. In the end, this research uses 1410 images of wildlife collected in the field and 1577 wildlife images from the internet to construct a research data set combined with the manual annotation of domain experts. At the same time, transfer learning is introduced to solve the problem of insufficient training data and the network is difficult to fit. The experimental results show that our model trained on a training set containing 2419 animal images has a mean average precision of 93.6% and an FPS (Frame Per Second) of 3.8 under the CPU. Compared with YOLO, the mean average precision is increased by 7.7%, and the FPS value is increased by 3.


2008 ◽  
Vol 4 (4) ◽  
pp. 339-347 ◽  
Author(s):  
Xiaojun Chen ◽  
Yanping Lin ◽  
Yiqun Wu ◽  
Chengtao Wang

Sign in / Sign up

Export Citation Format

Share Document