Exploring the Beneficial Endophytic Microorganisms for Plant Growth Promotion and Crop Protection: Elucidation of Some Bioactive Secondary Metabolites Involved in Both Effects

Author(s):  
Rania Aydi Ben Abdallah ◽  
Hayfa Jabnoun-Khiareddine ◽  
Mejda Daami-Remadi
2012 ◽  
Vol 194 (23) ◽  
pp. 6649-6650 ◽  
Author(s):  
Ju Yeon Song ◽  
Min-Jung Kwak ◽  
Kwang Youll Lee ◽  
Hyun Gi Kong ◽  
Byung Kwon Kim ◽  
...  

ABSTRACTBurkholderia pyrrociniaCH-67 was isolated from forest soil as a biocontrol agent to be utilized in agriculture. Here, we report the 8.05-Mb draft genome sequence of this bacterium. Its genome contains genes involved in biosynthesis of secondary metabolites and plant growth promotion, which may contribute to probiotic effects on plants.


Author(s):  
April S. Gislason ◽  
W. G. Dilantha Fernando ◽  
Teresa R. de Kievit

2020 ◽  
Vol 66 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Shrivardhan Dheeman ◽  
Nitin Baliyan ◽  
Ramesh Chandra Dubey ◽  
Dinesh Kumar Maheshwari ◽  
Sandeep Kumar ◽  
...  

This study emphasizes the beneficial role of rhizo-competitive Bacillus spp. isolated from rhizospheric and non-rhizospheric soil in plant growth promotion and yield improvement via nitrogen fixation and biocontrol of Sclerotium rolfsii causing foot rot disease in Eleusine coracana (Ragi). The selection of potent rhizobacteria was based on plant-growth-promoting attributes using Venn set diagram and Bonitur scale. Bacillus pumilus MSTA8 and Bacillus amyloliquefaciens MSTD26 were selected because they were effective in root colonization, rhizosphere competence, and biofilm formation using root exudates of E. coracana L. rich with carbohydrates, proteins, and amino acids. The relative chemotaxis index of the isolates expressed the invasive behavior of the rhizosphere. During pot and field trials, the consortium of the rhizobacteria in a vermiculite carrier increased the grain yield by 37.87%, with a significant harvest index of 16.45. Soil analysis after the field trial revealed soil reclamation potentials to manage soil nutrition and fertility. Both indexes ensured crop protection and production in eco-safe ways and herald commercialization of Bacillus bio-inoculant for improvement in crop production and disease management of E. coracana.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 101
Author(s):  
Udaya Kumar Vandana ◽  
Jina Rajkumari ◽  
L. Paikhomba Singha ◽  
Lakkakula Satish ◽  
Hemasundar Alavilli ◽  
...  

The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in ‘omic’ technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.


Sign in / Sign up

Export Citation Format

Share Document