Nonequilibrium Kosterlitz-Thouless Transition in the Three-Dimensional Driven Random Field XY Model

Author(s):  
Taiki Haga
2013 ◽  
Vol 103 (6) ◽  
pp. 67009 ◽  
Author(s):  
D. A. Garanin ◽  
E. M. Chudnovsky ◽  
T. Proctor

2018 ◽  
Vol 32 (25) ◽  
pp. 1850281 ◽  
Author(s):  
Qingmiao Nie ◽  
Haibin Li

Nonequilibrium phase transitions of vortex matter with a strong random pinning potential in layered superconductors are investigated by the three-dimensional frustrated anisotropic XY model and resistively-shunted junction dynamics at low, middle and high-temperatures, respectively. It is found that a disorder to order phase transition driven by an external current can be obtained at a low-temperature, however, a reordering configuration does not occur at a high-temperature. With the competition between thermal noise, disorder pins and current, the vortex matter can even show the reordering process twice at an intermediate temperature, giving a clear evidence of dc driven vortex lattice reorganization.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2790 ◽  
Author(s):  
Jitong Zhang ◽  
Mingrong Ren ◽  
Pu Wang ◽  
Juan Meng ◽  
Yuman Mu

High-precision indoor localization plays a vital role in various places. In recent years, visual inertial odometry (VIO) system has achieved outstanding progress in the field of indoor localization. However, it is easily affected by poor lighting and featureless environments. For this problem, we propose an indoor localization algorithm based on VIO system and three-dimensional (3D) map matching. The 3D map matching is to add height matching on the basis of previous two-dimensional (2D) matching so that the algorithm has more universal applicability. Firstly, the conditional random field model is established. Secondly, an indoor three-dimensional digital map is used as a priori information. Thirdly, the pose and position information output by the VIO system are used as the observation information of the conditional random field (CRF). Finally, the optimal states sequence is obtained and employed as the feedback information to correct the trajectory of VIO system. Experimental results show that our algorithm can effectively improve the positioning accuracy of VIO system in the indoor area of poor lighting and featureless.


2005 ◽  
Vol 42 (5) ◽  
pp. 1422-1436 ◽  
Author(s):  
Gordon A Fenton ◽  
D V Griffiths ◽  
W Cavers

To control serviceability problems arising from excessive settlement of shallow footings, geotechnical design codes generally include specifications regarding maximum settlement, which often govern the footing design. Once the footing has been designed and constructed, the actual settlement it experiences on a real three-dimensional soil mass can be quite different than expected, due to the soil's spatial variability. Because of this generally large variability (compared to other engineering materials, such as concrete and steel) and because this particular serviceability limit state often governs the design, it makes sense to consider a reliability-based approach to settlement design. This paper looks in some detail at a load and resistance factor design (LRFD) approach to limiting footing settlement. In particular, the resistance factors required to achieve a certain level of settlement reliability as a function of soil variability and site investigation intensity are determined analytically using random field theory. Simplified approximate relationships are proposed and tested using simulation via the random finite element method. It is found that the simplified relationships are validated both by theory and simulation and so can be used to augment the calibration of geotechnical LRFD code provisions with respect to shallow foundation settlement. Key words: reliability-based design, settlement, geotechnical, shallow foundation, random field, probability.


Sign in / Sign up

Export Citation Format

Share Document