The Internet of Things Based Water Quality Monitoring and Control

Author(s):  
Neha Dalwadi ◽  
Mamta Padole
2021 ◽  
Vol 9 (1) ◽  
pp. 47-55
Author(s):  
Yohanes Anton Nugroho ◽  
Muhammad Fitra Pratama

Changes in temperature, pH, and turbidity in concrete fish ponds greatly impact to the fish survival. Initial observations showed that among 3.067 fish seeds, 1.633 fish (53%) died and only 1.434 fish (47%) was successfully harvested. The application of water quality monitoring devices from concrete pools designed based on the Internet of Things technology has been tested. The monitoring equipment will not function optimally without an application that functions to receive monitoring data and then take action. Pool water quality monitoring equipment connected to the cloud using a GSM network connection. The recorded data is then displayed on the water quality monitoring application that designed using the Android operating system. Application design is developed using a User-Centered Design approach, where the design process was carried out by considering several variables: ease for use, clarity of information delivery, the fulfillment of needs, and appearance. Based on the results of the design evaluation, weaknesses can be determined, namely, difficulty to find the search menu for click history data, find the refresh button, read the results of searching for historical data, and read data in tables and graphs. Based on this, further improvements can be made to improve the application being made. The monitoring equipment is expected to provide information to pond managers to immediately take action if changing in pH and temperature beyond the limit so that the fish mortality rate can be minimized.


Author(s):  
Rheza Shandikri ◽  
Bayu Erfianto

In fish farming or aquaponics, one of the problems that are often encountered is water quality. Several parameters that must be monitored are ammonia, temperature, pH, and dissolved oxygen. There are available measuring devices for oxygen and ammonia levels in the market, but the price of the tool is not suitable for small scales. This study uses the Emerson formula and the Benson-Krause formula to determine ammonia and dissolved oxygen value. In this study, the two values were measured using RMSE, MAE, and MAPE against NH3 and Dissolved Oxygen values from Seneye. The output of this research is the level of water quality using Fuzzy logic and implementing the Internet of things to minimize human intervention with objects


2020 ◽  
Vol 3 (1) ◽  
pp. 155-164
Author(s):  
Suruchi Pokhrel ◽  
Anisha Pant ◽  
Ritisha Gautam ◽  
Dinesh Baniya Kshatri

Water pollution is one of the growing issues in a developing country like Nepal. In the present scenario, we are usually thoughtlessly trusting the drinking water suppliers with our health. Even though the water is purified as well as checked in the central distribution systems, the supplier, along with the general public is unaware of the water quality that reaches the end-users. By focusing on these above issues, we propose a low-cost monitoring system that can monitor water quality such as pH (potential of Hydrogen) and conductivity on a timely basis using the Internet of Things. The water quality monitoring sensors sense the necessary physical parameters and convert them into equivalent electrical form, i.e. by providing certain voltage as an output corresponding to the respective physical quantity. This value is mapped to the respective water quality measure and is stored in a database through the microcontroller using the Internet of Things. This aids the suppliers to centralize the regular monitoring of water from various locations as well as the supply pure water to the end-users.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 27
Author(s):  
Franco Cicirelli ◽  
Antonio Guerrieri ◽  
Andrea Vinci

The Internet of Things (IoT) and related technologies are promising in terms of realizing pervasive and smart applications, which, in turn, have the potential to improve the quality of life of people living in a connected world [...]


Author(s):  
R. J. Sapkal ◽  
Pooja Wattamwar ◽  
Rani Waghmode ◽  
Umrunnisa Tamboli

This paper describes the main reason for need of effective and efficient water level monitoring and control of water quality in flat system tends to keeping the human resources healthy and sustainable, and to reduce the usage of water for household purposes. Due to climate changes and variability so many huge impacts are caused by the water system to the natural environment. Incredible methods are used by collecting water samples, testing and analyses in water laboratories alone. However, It is not always easy to be captured, analyses and fast dissemination of information to relevant users for making timely and well-versed decisions. In this project Water Sensor System prototype is developed for water level and quality monitoring in society is presented. These kind of growth was introduced by the assessment of widespread atmosphere that Including accessibility of cellular network Coverage at the site of process.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3430 ◽  
Author(s):  
Roberto Casado-Vara ◽  
Zita Vale ◽  
Javier Prieto ◽  
Juan Corchado

The monitoring of the Internet of things networks depends to a great extent on the availability and correct functioning of all the network nodes that collect data. This network nodes all of which must correctly satisfy their purpose to ensure the efficiency and high quality of monitoring and control of the internet of things networks. This paper focuses on the problem of fault-tolerant maintenance of a networked environment in the domain of the internet of things. Based on continuous-time Markov chains, together with a cooperative control algorithm, a novel feedback model-based predictive hybrid control algorithm is proposed to improve the maintenance and reliability of the internet of things network. Virtual sensors are substituted for the sensors that the algorithm predicts will not function properly in future time intervals; this allows for maintaining reliable monitoring and control of the internet of things network. In this way, the internet of things network improves its robustness since our fault tolerant control algorithm finds the malfunction nodes that are collecting incorrect data and self-correct this issue replacing malfunctioning sensors with new ones. In addition, the proposed model is capable of optimising sensor positioning. As a result, data collection from the environment can be kept stable. The developed continuous-time control model is applied to guarantee reliable monitoring and control of temperature in a smart supermarket. Finally, the efficiency of the presented approach is verified with the results obtained in the conducted case study.


Sign in / Sign up

Export Citation Format

Share Document