Reactive Oxygen Species Generation in Neutrophils: Modulation by Nitric Oxide

Author(s):  
Sachin Kumar ◽  
Madhu Dikshit
2011 ◽  
Vol 4 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Antonin Lojek ◽  
Milan Číž ◽  
Michaela Pekarová ◽  
Gabriela Ambrožová ◽  
Ondřej Vašíček ◽  
...  

Modulation of metabolic activity of phagocytes by antihistaminesThe purpose of the study was to investigate the effects of H1-antihistamines of the 1stgeneration (antazoline, bromadryl, brompheniramine, dithiaden, cyclizine, chlorcyclizine, chlorpheniramine, clemastine) and the 2ndgeneration (acrivastine, ketotifen, and loratadine) on the respiratory burst of phagocytes. Reactive oxygen species generation in neutrophils isolated from rat blood was measured using luminol-enhanced chemiluminescence. Changes in nitrite formation and iNOS protein expression by RAW 264.7 macrophages were analysed using Griess reaction and Western blotting. The antioxidative properties of drugs in cell-free systems were detected spectrophotometrically, luminometrically, fluorimetrically, and amperometrically. The majority of the H1-antihistamines tested (bromadryl, brompheniramine, chlorcyclizine, chlorpheniramine, clemastine, dithiaden, and ketotifen) exhibited a significant inhibitory effect on the chemiluminescence activity of phagocytes. H1-antihistamines did not show significant scavenging properties against superoxide anion and hydroxyl radical, thus this could not contribute to the inhibition of chemiluminescence. H1-antihistamines had a different ability to modulate nitric oxide production by LPS-stimulated macrophages. Bromadryl, clemastine, and dithiaden were the most effective since they inhibited iNOS expression, which was followed by a significant reduction in nitrite levels. H1-antihistamines had no scavenging activity against nitric oxide. It can be concluded that the effects observed in the H1-antihistamines tested are not mediated exclusively via H1-receptor pathway or by direct antioxidative properties. Based on our results, antihistamines not interfering with the microbicidal mechanisms of leukocytes (antazoline, acrivastine and cyclizine) could be used preferentially in infections. Other antihistamines should be used, under pathological conditions accompanied by the overproduction of reactive oxygen species.


Nitric Oxide ◽  
2011 ◽  
Vol 25 (2) ◽  
pp. 216-221 ◽  
Author(s):  
Hirofumi Yoshioka ◽  
Keisuke Mase ◽  
Miki Yoshioka ◽  
Michie Kobayashi ◽  
Shuta Asai

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2966 ◽  
Author(s):  
Milica Lazarević ◽  
Emanuela Mazzon ◽  
Miljana Momčilović ◽  
Maria Basile ◽  
Giuseppe Colletti ◽  
...  

GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 μM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H2S donor, Na2S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.


Sign in / Sign up

Export Citation Format

Share Document