Secure Communication Using a New Hyperchaotic System with Hidden Attractors

Author(s):  
Jay Prakash Singh ◽  
Kshetrimayum Lochan ◽  
Binoy Krishna Roy
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Li Xiong ◽  
Zhenlai Liu ◽  
Xinguo Zhang

This paper is devoted to introduce a novel fourth-order hyperchaotic system. The hyperchaotic system is constructed by adding a linear feedback control level based on a modified Lorenz-like chaotic circuit with reduced number of amplifiers. The local dynamical entities, such as the basic dynamical behavior, the divergence, the eigenvalue, and the Lyapunov exponents of the new hyperchaotic system, are all investigated analytically and numerically. Then, an active control method is derived to achieve global chaotic synchronization of the novel hyperchaotic system through making the synchronization error system asymptotically stable at the origin based on Lyapunov stability theory. Next, the proposed novel hyperchaotic system is applied to construct another new hyperchaotic system with circuit deformation and design a new hyperchaotic secure communication circuit. Furthermore, the implementation of two novel electronic circuits of the proposed hyperchaotic systems is presented, examined, and realized using physical components. A good qualitative agreement is shown between the simulations and the experimental results around 500 kHz and below 1 MHz.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Wang ◽  
Xiucheng Dong

This paper studies the problem on chaotic secure communication, and a new hyperchaotic system is included for the scheme design. Based on Lyapunov method andH∞techniques, two kinds of chaotic secure communication schemes in the case that system disturbances exist are presented for the possible application in real engineering; corresponding theoretical derivations are also provided. In the end, some typical numerical simulations are carried out to demonstrate the effectiveness of the proposed schemes.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 287 ◽  
Author(s):  
Licai Liu ◽  
Chuanhong Du ◽  
Xiefu Zhang ◽  
Jian Li ◽  
Shuaishuai Shi

This paper presents a new no-equilibrium 4-D hyperchaotic multistable system with coexisting hidden attractors. One prominent feature is that by varying the system parameter or initial value, the system can generate several nonlinear complex attractors: periodic, quasiperiodic, multiple topology chaotic, and hyperchaotic. The dynamics and complexity of the proposed system were investigated through Lyapunov exponents (LEs), a bifurcation diagram, a Poincaré map, and spectral entropy (SE). The simulation and calculation results show that the proposed multistable system has very rich and complex hidden dynamic characteristics. Additionally, the circuit of the chaotic system is designed to verify the physical realizability of the system. This study provides new insights into uncovering the dynamic characteristics of the coexisting hidden attractors system and provides a new choice for nonlinear control or chaotic secure communication technology.


2008 ◽  
Vol 372 (2) ◽  
pp. 124-136 ◽  
Author(s):  
Guoyuan Qi ◽  
Michaël Antonie van Wyk ◽  
Barend Jacobus van Wyk ◽  
Guanrong Chen

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Li ◽  
Ranchao Wu

A new 4D hyperchaotic system is constructed based on the Lorenz system. The compound structure and forming mechanism of the new hyperchaotic attractor are studied via a controlled system with constant controllers. Furthermore, it is found that the Hopf bifurcation occurs in this hyperchaotic system when the bifurcation parameter exceeds a critical value. The direction of the Hopf bifurcation as well as the stability of bifurcating periodic solutions is presented in detail by virtue of the normal form theory. Numerical simulations are given to illustrate and verify the results.


2018 ◽  
Vol 28 (13) ◽  
pp. 1850167 ◽  
Author(s):  
Sen Zhang ◽  
Yicheng Zeng ◽  
Zhijun Li ◽  
Chengyi Zhou

Recently, the notion of hidden extreme multistability and hidden attractors is very attractive in chaos theory and nonlinear dynamics. In this paper, by utilizing a simple state feedback control technique, a novel 4D fractional-order hyperchaotic system is introduced. Of particular interest is that this new system has no equilibrium, which indicates that its attractors are all hidden and thus Shil’nikov method cannot be applied to prove the existence of chaos for lacking hetero-clinic or homo-clinic orbits. Compared with other fractional-order chaotic or hyperchaotic systems, this new system possesses three unique and remarkable features: (i) The amazing and interesting phenomenon of the coexistence of infinitely many hidden attractors with respect to same system parameters and different initial conditions is observed, meaning that hidden extreme multistability arises. (ii) By varying the initial conditions and selecting appropriate system parameters, the striking phenomenon of antimonotonicity is first discovered, especially in such a fractional-order hyperchaotic system without equilibrium. (iii) An attractive special feature of the convenience of offset boosting control of the system is also revealed. The complex and rich hidden dynamic behaviors of this system are investigated by using conventional nonlinear analysis tools, including equilibrium stability, phase portraits, bifurcation diagram, Lyapunov exponents, spectral entropy complexity, and so on. Furthermore, a hardware electronic circuit is designed and implemented. The hardware experimental results and the numerical simulations of the same system on the Matlab platform are well consistent with each other, which demonstrates the feasibility of this new fractional-order hyperchaotic system.


2009 ◽  
Vol 58 (7) ◽  
pp. 4457
Author(s):  
Liu Ming-Hua ◽  
Feng Jiu-Chao

Sign in / Sign up

Export Citation Format

Share Document