Kinematics Research of Chewing Robot Based on Six-Axis Parallel Mechanism

Author(s):  
Xingyu Zhou ◽  
Jinghu Yu
2010 ◽  
Vol 450 ◽  
pp. 283-287 ◽  
Author(s):  
Rui Wang ◽  
Gang Ding ◽  
Shi Sheng Zhong

A 5-axis parallel-serial machine tool is proposed, which consists of a 3-DOF parallel mechanism and a 2-DOF serial mechanism, and the kinematics analysis is discussed in detail based on the vector method. The size of the velocity transformation matrix is decreased. The problem of parameter coupling is resolved by adopting identity matrix and four-element vector. The relationship between the velocity and acceleration of the movable platform and the input parameters of the parallel mechanism is established. These algorithms are verified correct through ADAMS (Automatic Dynamic Analysis of Mechanical System) and can be referenced by kinematics analysis, dynamics analysis of parallel or parallel-serial machine tools, which have coupling kinematics parameters.


Tehnika ◽  
2021 ◽  
Vol 76 (5) ◽  
pp. 603-612
Author(s):  
Slobodan Tabaković ◽  
Saša Živanović ◽  
Milan Zeljković ◽  
Zoran Dimić

The paper shows the configuration of a new educational machine based on hybrid kinematics mechanism. The concept of a three-axis O-X hybrid mechanism is described, consisting of a single serial translational axis and a two-axis parallel mechanism that can operate in two variants, with extended form O and crossed form X-joints of the parallel mechanism. The virtual prototype of the machine was configured in a CAD/CAM environment, where simulations of the mechanism's operation were performed. A programming system for machine has been prepared that also enables program verification. An open architecture control system based on the LinuxCNC platform has been configured for control of the machine. The trial work of the machine was performed in order to verify the realized prototype and control.


2007 ◽  
Vol 364-366 ◽  
pp. 1037-1042
Author(s):  
Ying Hu ◽  
Bing Li ◽  
Dai Zhong Su ◽  
Hong Hu

Based on the proposed 4PUS-1RPU parallel mechanism a 5-axis Parallel Kinematic Machine (PKM) scheme has been developed and the dynamic characteristics of the PKM have been investigated in detail. To avoid the intensive computation caused by finite element analysis in the research, two typical metamodeling techniques of Response Surface Methodology (RSM) and its artificial neural network enhanced technique were employed as the robust design approaches. Comparing the results obtained from the direct RSM the modeling accuracy by the artificial neural network enhanced RSM can be improved.


Robotica ◽  
2005 ◽  
Vol 24 (1) ◽  
pp. 39-49 ◽  
Author(s):  
A. Pashkevich ◽  
D. Chablat ◽  
P. Wenger

The paper addresses kinematic and geometrical aspects of the Orthoglide, a three-DOF parallel mechanism. This machine consists of three fixed linear joints, which are mounted orthogonally, three identical legs and a mobile platform, which moves in the Cartesian x-y-z space with fixed orientation. New solutions to solve inverse/direct kinematics are proposed, and we perform a detailed workspace and singularity analysis, taking into account specific joint limit constraints.


Author(s):  
Hamish L. Fraser

The topic of strain and lattice parameter measurements using CBED is discussed by reference to several examples. In this paper, only one of these examples is referenced because of the limitation of length. In this technique, scattering in the higher order Laue zones is used to determine local lattice parameters. Work (e.g. 1) has concentrated on a model strained-layer superlattice, namely Si/Gex-Si1-x. In bulk samples, the strain is expected to be tetragonal in nature with the unique axis parallel to [100], the growth direction. When CBED patterns are recorded from the alloy epi-layers, the symmetries exhibited by the patterns are not tetragonal, but are in fact distorted from this to lower symmetries. The spatial variation of the distortion close to a strained-layer interface has been assessed. This is most readily noted by consideration of Fig. 1(a-c), which show enlargements of CBED patterns for various locations and compositions of Ge. Thus, Fig. 1(a) was obtained with the electron beam positioned in the center of a 5Ge epilayer and the distortion is consistent with an orthorhombic distortion. When the beam is situated at about 150 nm from the interface, the same part of the CBED pattern is shown in Fig. 1(b); clearly, the symmetry exhibited by the mirror planes in Fig. 1 is broken. Finally, when the electron beam is positioned in the center of a 10Ge epilayer, the CBED pattern yields the result shown in Fig. 1(c). In this case, the break in the mirror symmetry is independent of distance form the heterointerface, as might be expected from the increase in the mismatch between 5 and 10%Ge, i.e. 0.2 to 0.4%, respectively. From computer simulation, Fig.2, the apparent monocline distortion corresponding to the 5Ge epilayer is quantified as a100 = 0.5443 nm, a010 = 0.5429 nm and a001 = 0.5440 nm (all ± 0.0001 nm), and α = β = 90°, γ = 89.96 ± 0.02°. These local symmetry changes are most likely due to surface relaxation phenomena.


2010 ◽  
Vol 36 (3) ◽  
pp. 459-464 ◽  
Author(s):  
Cheng-Dong LI ◽  
Jian-Qiang YI ◽  
Yi YU ◽  
Dong-Bin ZHAO

Sign in / Sign up

Export Citation Format

Share Document