Effect of Open Boundary Conditions on the Tidal Modeling Around the West Coast of Korea

APAC 2019 ◽  
2019 ◽  
pp. 731-736
Author(s):  
Van Thinh Nguyen ◽  
Minjae Lee
Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1706
Author(s):  
Van Thinh Nguyen ◽  
Minjae Lee

The aim of this study was to investigate the effect of open boundary conditions and bottom roughness on the tidal elevations around the West Coast of Korea (WCK) using an open-source computational fluids dynamics tool, the TELEMAC model. To obtain a detailed tidal forcing at open boundaries, three well-known assimilated tidal models—the Finite Element Solution (FES2014), the Oregon State University TOPEX/Poseidon Global Inverse Solution Tidal Model (TPXO9.1) and the National Astronomical Observatory of Japan (NAO.99Jb)—have been applied to interpolate the offshore tidal boundary conditions. A number of numerical simulations have been performed for different offshore open boundary conditions, as well as for various uniform and non-uniform bottom roughness coefficients. The numerical results were calibrated against observations to determine the best fit roughness values for different sub-regions within WCK. In order to find out the dependence of the tidal elevation around the WCK on the variations of open boundary forcing, a sensitivity analysis of coastal tide elevation was carried out. Consequently, it showed that the tidal elevation around the WCK was strongly affected by local characteristics, rather than by the offshore open boundary conditions. Eventually, the numerical results can provide better quantitative and qualitative tidal information around the WCK than the data obtained from assimilated tidal models.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Linhu Li ◽  
Ching Hua Lee ◽  
Jiangbin Gong

AbstractNon-Hermitian systems have been shown to have a dramatic sensitivity to their boundary conditions. In particular, the non-Hermitian skin effect induces collective boundary localization upon turning off boundary coupling, a feature very distinct from that under periodic boundary conditions. Here we develop a full framework for non-Hermitian impurity physics in a non-reciprocal lattice, with periodic/open boundary conditions and even their interpolations being special cases across a whole range of boundary impurity strengths. We uncover steady states with scale-free localization along or even against the direction of non-reciprocity in various impurity strength regimes. Also present are Bloch-like states that survive albeit broken translational invariance. We further explore the co-existence of non-Hermitian skin effect and scale-free localization, where even qualitative aspects of the system’s spectrum can be extremely sensitive to impurity strength. Specific circuit setups are also proposed for experimentally detecting the scale-free accumulation, with simulation results confirming our main findings.


2012 ◽  
Vol 31 (3) ◽  
pp. 685-690 ◽  
Author(s):  
Hyun-Sung Yang ◽  
Kyung-Il Park ◽  
Ludovic Donaghy ◽  
Mausumi Adhya ◽  
Kwang-Sik Choi

2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Samuel Mugel ◽  
Alexandre Dauphin ◽  
Pietro Massignan ◽  
Leticia Tarruell ◽  
Maciej Lewenstein ◽  
...  

Topologically non-trivial Hamiltonians with periodic boundary conditions are characterized by strictly quantized invariants. Open questions and fundamental challenges concern their existence, and the possibility of measuring them in systems with open boundary conditions and limited spatial extension. Here, we consider transport in Hofstadter strips, that is, two-dimensional lattices pierced by a uniform magnetic flux which extend over few sites in one of the spatial dimensions. As we show, an atomic wave packet exhibits a transverse displacement under the action of a weak constant force. After one Bloch oscillation, this displacement approaches the quantized Chern number of the periodic system in the limit of vanishing tunneling along the transverse direction. We further demonstrate that this scheme is able to map out the Chern number of ground and excited bands, and we investigate the robustness of the method in presence of both disorder and harmonic trapping. Our results prove that topological invariants can be measured in Hofstadter strips with open boundary conditions and as few as three sites along one direction.


Sign in / Sign up

Export Citation Format

Share Document