Linear Static and Dynamic Analyses of Reinforced Concrete Spherical Dome Structure Under Seismic Loads

Author(s):  
R. Pathak ◽  
R. K. Khare
Author(s):  
Mohamed Cherif Djemai ◽  
Mahmoud Bensaibi ◽  
Fatma Zohra Halfaya

Bridges are commonly used lifelines; they play an important role in the economic activity of a city or a region and their role can be crucial in a case of a seismic event since they allow the arrival of the first aid. Reinforced concrete (RC) bridges are worldwide used type view their durability, flexibility and economical cost. In fact, their behavior under seismic loading was the aim of various studies. In the present study the effect of two structural parameters i.e. the height and the type of piers of reinforced concrete bridges on seismic response is investigated. For that reason, different multi-span continuous girder bridges models with various geometrical parameters are considered. Then, non-linear dynamic analyses are performed based on two types of piers which are: multiple columns bent and wall piers with varying heights. In this approach, a serie of 40 ground motions records varying from weak to strong events selected from Building Research Institute (BRI) strong motion database are used including uncertainty in the soil and seismic characteristics. Modelling results put most emphasis on the modal periods and responses of the top pier displacements, they show the influence of the considered parameters on the behavior of such structures and their impact on the strength of reinforced concrete bridges.


Author(s):  
Takuya NAGAE ◽  
Hitoshi UCHIMURA ◽  
Kouichi KOBAYASHI ◽  
Nozomu YOSHIDA ◽  
Shizuo HAYASHI

1989 ◽  
Vol 5 (1) ◽  
pp. 121-143 ◽  
Author(s):  
E. Miranda ◽  
V. V. Bertero

This paper summarizes the results of analytical studies conducted to understand the observed performance of low-rise buildings located in the soft-soil zone of Mexico City during the 1985 Michoacan earthquake. Two low-rise reinforced concrete moment resistant space frames were designed in accordance with the 1976 Code for the Federal District of Mexico. They were subjected to a series of static and time history dynamic analyses. The results indicate that the designed buildings have significantly larger lateral strengths than required by the Code and that these overstrengths were the main reason for the excellent performance of most of the low-rise buildings in Mexico City during the 1985 Michoacan earthquake.


Author(s):  
Minehiro Nishiyama

The current seismic design procedure for prestressed concrete buildings in Japan is described. The design seismic loads for prestressed concrete buildings provided in NZS 4203:1984 are compared with those in the corresponding Japanese code. Comparisons between prestressed concrete and ordinary reinforced concrete buildings are discussed with regard to design seismic load, dynamic response during earthquake motions and the performance of beam-column joints under reversed cyclic loading. The results of several tests are summarised.


Sign in / Sign up

Export Citation Format

Share Document