scholarly journals Functional Analysis of Plant Genes Related to Arbuscular Mycorrhiza Symbiosis Using Agrobacterium rhizogenes-Mediated Root Transformation and Hairy Root Production

Author(s):  
Tania Ho-Plágaro ◽  
María Isabel Tamayo-Navarrete ◽  
José Manuel García-Garrido
2003 ◽  
Vol 20 (3) ◽  
pp. 257-261
Author(s):  
Takeshi FUKUMOTO ◽  
Teruo NONOMURA ◽  
Yoshinori MATSUDA ◽  
Shin-ichirou KOMAKI ◽  
Nobuyuki MORIURA ◽  
...  

2021 ◽  
Author(s):  
Lili Zhou ◽  
Yali Wang ◽  
Peilin Wang ◽  
Jiamin Wang ◽  
Hongmei Cheng

Abstract Background CRIPSR/Cas9 gene editing has the ability to effectively modify plant genomes. Multiple target sites usually were designed and the effective target sites were selected for editing. However, upland cotton is allotetraploid and is commonly considered as difficult and inefficient to transform. Therefore, it’s important to quickly identify feasibility of the target site. In this study, we use Agrobacterium rhizogenes K599 strain to infect cotton shoot meristem and induce them to grow hairy roots to detect the feasibility of a selected target designed in GhMYB25-like gene. Results We designed a sgRNA within the second exons of GhMYB25-likeA and GhMYB25-likeD and constructed the CRISPR vector. Transient hairy root transformation using A. rhizogenes K599 with four OD600s (0.4, 0.6,0.8, 1.0) was performed in Coker 312 (R15). The results show that A. rhizogenes at OD600 = 0.6–0.8 is the best concentration range for inducing cotton hairy roots. The other three cultivars (TM-1, Lumian 21, Zhongmian 49) were injected using A. rhizogenes K599 with OD600 = 0.6-0.8 and all produced hairy roots. We characterized ten R15 plants with hairy roots and detected different degrees of base deletions and insert at the target site in five R15 plants. Conclusion Overall, our data show A. rhizogenes-mediated transient hairy root transformation offers a rapid and efficient method to detect sgRNA feasibility in cotton.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuanyuan Cheng ◽  
Xiaoli Wang ◽  
Li Cao ◽  
Jing Ji ◽  
Tengfei Liu ◽  
...  

Abstract Background Agrobacterium-mediated genetic transformation is a widely used and efficient technique for gene functional research in crop breeding and plant biology. While in some plant species, including soybean, genetic transformation is still recalcitrant and time-consuming, hampering the high-throughput functional analysis of soybean genes. Thus we pursue to develop a rapid, simple, and highly efficient hairy root system induced by Agrobacterium rhizogenes (A. rhizogenes) to analyze soybean gene function. Results In this report, a rapid, simple, and highly efficient hairy root transformation system for soybean was described. Only sixteen days were required for the whole workflow and the system was suitable for various soybean genotypes, with an average transformation frequency of 58–64%. Higher transformation frequency was observed when wounded cotyledons from 1-day-germination seeds were inoculated and co-cultivated with A. rhizogenes in 1/2 B5 (Gamborg’ B-5) medium. The addition of herbicide selection to root production medium increased the transformation frequency to 69%. To test the applicability of the hairy root system for gene functional analysis, we evaluated the protein expression and subcellular localization in transformed hairy roots. Transgenic hairy roots exhibited significantly increased GFP fluorescence and appropriate protein subcellular localization. Protein–protein interactions by BiFC (Bimolecular Fluorescent Complimentary) were also explored using the hairy root system. Fluorescence observations showed that protein interactions could be observed in the root cells. Additionally, hairy root transformation allowed soybean target sgRNA screening for CRISPR/Cas9 gene editing. Therefore, the protocol here enables high-throughput functional characterization of candidate genes in soybean. Conclusion A rapid, simple, and highly efficient A. rhizogenes-mediated hairy root transformation system was established for soybean gene functional analysis, including protein expression, subcellular localization, protein–protein interactions and gene editing system evaluation.


MethodsX ◽  
2020 ◽  
Vol 7 ◽  
pp. 101098
Author(s):  
Constantine Garagounis ◽  
Maria-Eleni Georgopoulou ◽  
Konstantina Beritza ◽  
Kalliope K. Papadopoulou

3 Biotech ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Shilpi Sharma ◽  
Yeshveer Singh ◽  
Praveen K. Verma ◽  
Jyoti Vakhlu

Sign in / Sign up

Export Citation Format

Share Document