scholarly journals Introduction to Climate Change Over the Indian Region

Author(s):  
R. Krishnan ◽  
C. Gnanaseelan ◽  
J. Sanjay ◽  
P. Swapna ◽  
Chirag Dhara ◽  
...  
Keyword(s):  
2017 ◽  
Vol 11 (1) ◽  
pp. 105-120
Author(s):  
S.S. Nandargi ◽  
S.S. Mahto ◽  
S. Ram

Background: The varied topographical features of the Indian region are responsible for variation in distribution of rainfall over different parts of the country. More than 80% of the country’s rainfall is received during the monsoon season. Researchers noted that there is change in distribution of this monsoon rainfall associated with climate change and global warming. This changing pattern in rainfall can be investigated by seasonality index (SI) of rainfall. Such studies are essential to identify the changes in runoff, infiltration, surface and groundwater management, agricultural planning, etc. Method: The variation in seasonality in rainfall over the Indian region is examined using monthly rainfall values for the period 1951 to 2015 of 34 meteorological sub-divisions excluding two Sea Islands. A seasonality index (SI) of a monthly rainfall is computed on monthly, seasonal (June to September) and annual scale. It is observed that seasonality index of rainfall of 34 sub-divisions for all months are in the range 0.37 (Jammu & Kashmir) to 1.56 (Saurashtra Kutch & Diu). Results: The results show that rainfall is markedly seasonal with a long dry season and most rainfall in less than three months. Most of the rainfall occurs in monsoon months. The seasonality index for monsoon season is computed and it varies from 0.19 (Nagaland, Manipur, Mizoram,Tripura) to 0.59 (Saurashtra Kutch & Diu) resulting in rainfall spread throughout the year, but with a definite wetter season. Conclusion: Trends of this index through the 65-year period are identified and indicate that seasonality is increasing in Uttaranchal, Himachal Pradesh, Gujarat Region-Dadra & Nagar Haveli; Saurashtra-Kutch & Diu, Konkan & Goa, Madhya Maharashtra, Marathwada, Chattisgarh, Tamilnadu & Pondicherry. The analysis clearly showed the climate change impact on northwest sub-divisions of the country showing increase in SI values leading to dryness during the monsoon season. The negative trend in SI values was observed in Sub- Himalayan West Bengal, Haryana-Delhi-Chandigarh, Punjab, Jammu & Kashmir, West and east Rajasthan, coastal Andhra Pradesh showing increasing wetness for an already wet months although rainfall occurs in a very short period of just a month or two.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 97-108
Author(s):  
B. H. SUBBARAYA ◽  
SHAM LAL ◽  
M. NAJA

A systematic programme of monitoring surface ozone and its precursor gases CH4, CO and NOx (NO + NO2) at some selected sites in the Indian region was started under ISRO's geosphere biosphere programme in 1991. Measurements have been made at Ahmedabad an urban polluted site, Gadanki a rural relatively clean site, Gurusikhar a high altitude site representative of the free troposphere and Trivandrum a coastal (relatively clean) site influenced by marine air. The data has been used to study different features of troposphere chemistry in the tropics. Some of the results from this programme relevant to the climate change problem are presented in this paper.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document