Identification of Liquid Slosh Behavior Using Continuous-Time Hammerstein Model Based Sine Cosine Algorithm

Author(s):  
Julakha Jahan Jui ◽  
Mohd Helmi Suid ◽  
Zulkifli Musa ◽  
Mohd Ashraf Ahmad
2020 ◽  
Vol 1529 ◽  
pp. 042090
Author(s):  
Julakha Jahan Jui ◽  
Mohd Helmi Suid ◽  
Mohd Riduwan Ghazali ◽  
Mohd Ashraf Ahmad ◽  
Mohd Zaidi Mohd Tumari

Author(s):  
Mohd Ashraf Ahmad ◽  
Zulkifli Musa ◽  
Mohd Helmi Suid ◽  
Mohd Zaidi Mohd Tumari

This paper presents the identification of liquid slosh plant using the Hammerstein model based on Grey Wolf Optimizer (GWO) method. A remote car that carrying a container of liquid is considered as the liquid slosh experimental rig. In contrast to other research works, this paper consider a piece-wise affine function in the nonlinear function of the Hammerstein model, which is more generalized function. Moreover, a continuous-time transfer function is utilized in the Hammerstein model, which is more suitable to represent a real system. The GWO method is used to tune both coefficients in the nonlinear function and transfer function of the Hammerstein model such that the error between the identified output and the real experimental output is minimized. The effectiveness of the proposed framework is assessed in terms of the convergence curve response, output response, and the stability of the identified model through the bode plot and pole zero map. The results show that the GWO based method is able to produce a Hammerstein model that yields identified output response close to the real experimental slosh output.


2021 ◽  
Vol 21 (3) ◽  
pp. 160-174
Author(s):  
Julakha Jahan Jui ◽  
Mohd Ashraf Ahmad ◽  
Mohamed Sultan Mohamed Ali ◽  
Mohd Anwar Zawawi ◽  
Mohd Falfazli Mat Jusof

Abstract This paper presents the identification of the ThermoElectric Cooler (TEC) plant using a hybrid method of Multi-Verse Optimizer with Sine Cosine Algorithm (hMVOSCA) based on continuous-time Hammerstein model. These modifications are mainly for escaping from local minima and for making the balance between exploration and exploitation. In the Hammerstein model identification a continuous-time linear system is used and the hMVOSCA based method is used to tune the coefficients of both the Hammerstein model subsystems (linear and nonlinear) such that the error between the estimated output and the actual output is reduced. The efficiency of the proposed method is evaluated based on the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon’s rank test. The experimental findings show that the hMVOSCA can produce a Hammerstein system that generates an estimated output like the actual TEC output. Moreover, the identified outputs also show that the hMVOSCA outperforms other popular metaheuristic algorithms.


2021 ◽  
Author(s):  
Julakha Jahan Jui ◽  
Mohd Ashraf Ahmad ◽  
Mohamed Sultan Mohamed Ali ◽  
Mohd Anwar Zawawi ◽  
Mohd Falfazli Mat Jusof

2011 ◽  
pp. 105-132
Author(s):  
Diogo Narciso ◽  
Nuno P. Faísca ◽  
Konstantinos I. Kouramas ◽  
Micheal C. Georgiadis

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Ruobing Li ◽  
Quanmin Zhu ◽  
Janice Kiely ◽  
Weicun Zhang

To setup a universal proper user toolbox from previous individual research publications, this study generalises the algorithms for the U-model dynamic inversion based on the realisation of U-model from polynomial and state-space described continuous-time (CT) systems and presents the corresponding U-control system design in a systematic procedure. Then, it selects four CT dynamic plants plus a wind energy conversion system for simulation case studies in Matlab/Simulink to test/demonstrate the proposed U-model-based design procedure and dynamic inversion algorithms. This work can be treated as a U-control system design user manual in some sense.


Sign in / Sign up

Export Citation Format

Share Document