Characteristic Parameters Estimation of Active Magnetic Bearings for Varying Controlling Parameters

Author(s):  
Sampath Kumar Kuppa ◽  
Mohit Lal
Author(s):  
Sampath Kumar Kuppa ◽  
Mohit Lal

Abstract Present research inspects the performance of rotor–bearing–coupling system in the presence of active magnetic bearings (AMBs). A methodology is suggested to quantify various fault characteristics along with AMB characteristic parameters of a coupled turbine generator system. A simplest possible turbogenerator system is modeled to analyze coupling misalignment. Conventional methodology to estimate dynamic system parameters based on forced response information is not enough for AMB-integrated rotor system because it requires current information along with displacement information. The controlling current of AMB is tuned and controlled with a controller of proportional–integral–derivative (PID) type. A numerical technique (Lagrange's equation) is applied to get equations of motion (EOM). Runge–Kutta technique is used to obtain EOM to acquire the time domain responses. The fast Fourier transformation (FFT) is applied on obtained responses to acquire responses in the frequency domain, and full spectrum technique is applied to propose the methodology. A methodology that depends on the least squares regression approach is proposed to evaluate the multifault parameters of AMB-integrated rotor system. The robustness of the algorithm is checked against various levels of noise and modeling error and observed efficient. An appreciable reduction in misalignment forces and moments is observed by using AMBs.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5249
Author(s):  
Karel Kalista ◽  
Jindrich Liska ◽  
Jan Jakl

Verification of the behaviour of new designs of rotor seals is a crucial phase necessary for their use in rotary machines. Therefore, experimental equipment for the verification of properties that have an effect on rotor dynamics is being developed in the test laboratories of the manufacturers of these components all over the world. In order to be able to compare the analytically derived and experimentally identified values of the seal parameters, specific requirements for the rotor vibration pattern during experiments are usually set. The rotor vibration signal must contain the specified dominant components, while the others, usually caused by unbalance, must be attenuated. Technological advances have made it possible to use magnetic bearings in test equipment to support the rotor and as a rotor vibration exciter. Active magnetic bearings allow control of the vibrations of the rotor and generate the desired shape of the rotor orbit. This article presents a solution developed for a real test rig equipped with active magnetic bearings and rotor vibration sensors, which is to be used for testing a new design of rotor seals. Generating the exact shape of the orbit is challenging. The exact shape of the rotor orbit is necessary to compare the experimentally and numerically identified properties of the seal. The generalized notch filter method is used to compensate for the undesired harmonic vibrations. In addition, a novel modified generalized notch filter is introduced, which is used for harmonic vibration generation. The excitation of harmonic vibration of the rotor in an AMB system is generally done by injecting the harmonic current into the control loop of each AMB axis. The motion of the rotor in the AMB axis is coupled, therefore adjustment of the amplitudes and phases of the injected signals may be tedious. The novel general notch filter algorithm achieves the desired harmonic vibration of the rotor automatically. At first, the general notch filter algorithm is simulated and the functionality is confirmed. Finally, an experimental test device with an active magnetic bearing is used for verification of the algorithm. The measured data are presented to demonstrate that this approach can be used for precise rotor orbit shape generation by active magnetic bearings.


Sign in / Sign up

Export Citation Format

Share Document