Seismic Response of Gravity Retaining Wall

Author(s):  
Monica Joseph ◽  
Subhadeep Banerjee
2019 ◽  
Vol 8 (4) ◽  
pp. 2656-2661

The design of the Gravity retaining wall (GRW) is a trial and error process. Prevailing conditions of backfill are used to determine the profile of GRW, which proceeds with the selection of provisional dimensions. The optimum section is having factors of safety of stability higher than the allowable values and stresses in the cross-section smaller than permissible. The cross-section is designed to fulfill conditions of stability, subjected to very low stresses. The strength of the material, which is provided in the cross-section remains unutilized. A computer program is developed to find stresses at various locations on the cross-section of GRW using the Finite Element Method (FEM). A discontinuity in the form of a rectangular cavity is introduced in the cross-section of GRW to optimize it. The rectangular cavity is introduced in the cross-section of GRW at different locations. An attempt is made in this paper to find the stress distribution in the gravity retaining wall cross-section and to study the effect of the rectangular cavity on the stress distribution. Two cases representing different locations are considered to study the effect of the cavity. The location of the cavity is distinguished by the parameter w, the effects of cases with varied was 0.2305 (Case-I) and 0.1385 (Case-II) are observed. The cavity, which is provided not only makes the wall structurally efficient but also economically feasible.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 50
Author(s):  
T Subramani ◽  
E Narendra Kumar

Retaining systems are widely used international for serving numerous functions in structures and infrastructures. The seismic response of forms of walls that assist a single soil layer has been examined with the aid of some of researchers in the past. The design of preserving partitions in seismic areas poses a complex problem. The conventional layout method usually contains calculation of an element of safety in opposition to sliding, overturning and bearing ability failure. Retaining partitions have suffered damages under beyond earthquakes. Typically the analyses do not bear in mind the retained soil’s interplay with the wall, which takes location at some point of dynamic conditions. The situations of separation of wall (at some point of interactions) over again trade the dynamic traits of the assumed wall-soil interplay that needs to be addressed. Our study conducts the retaining wall beneath static in addition to seismic situations about above components.  


2020 ◽  
Vol 48 (5) ◽  
pp. 603-613 ◽  
Author(s):  
Si-Hong Liu ◽  
Fan Jia ◽  
Xiao-Lin Chen ◽  
Ling-Jun Li

Sign in / Sign up

Export Citation Format

Share Document