Simulation and Research of Upper Limb Rehabilitation Evaluation System Based on Micro Inertial Sensor Network

Author(s):  
Lumin Chen ◽  
Yihao Li ◽  
Lina Han ◽  
Liang Yuan ◽  
Yuxiang Sun ◽  
...  
2011 ◽  
Vol 48-49 ◽  
pp. 1345-1350
Author(s):  
Xing Li ◽  
Jian Hui Wang ◽  
Xiao Ke Fang

In this paper, aiming at the structure of upper-limb rehabilitation robot, establish the model of algorithmic control based on fuzzy neural network and virtual reality simulation model for 5dof upper-limb rehabilitant robot, and take the elbow joint for example to do simulation analysis. The result of simulation shows the fuzzy neural network control is practicable and its control accuracy takes the precedence over the traditional methods. The virtual-reality simulation of 5dof upper-limb rehabilitation robot, which is benefit to understand the complex relationships among the objects, can emulate the features of real rehabilitation robot, laying a solid foundation for rehabilitation evaluation system and telemedicine.


2016 ◽  
Vol 10 (4) ◽  
Author(s):  
Taylor C. Hornung ◽  
Stephen J. Piazza ◽  
Everett C. Hills ◽  
Jason Z. Moore

This paper explores the design of a dynamically weighted therapy bar, which can provide real-time quantitative performance information and adjustments during rehabilitation exercise. In contrast, typical therapy equipment is passive, offering no feedback to the patient or clinician. The dynamic weighted bar (DWB) was designed and fabricated containing an inertial sensor which tracks the orientation of the bar and adjusts the position of an internal weight accordingly, in turn providing a targeted force imbalance between the patient's two arms. Step input experiments were performed on the device while it was held in various stationary positions. The DWB was able to successfully function and transmit motion information. It was able to produce a center of mass shift of 101.6 mm, and a complete travel time between 0.96 s and 1.41 s over the entire length. The use of the DWB device can offer many benefits during rehabilitation including access to more quantitative information for clinicians as well as the potential for more personalized therapy programs.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 307-313 ◽  
Author(s):  
Baoguo XU ◽  
Si PENG ◽  
Aiguo SONG

ROBOT ◽  
2012 ◽  
Vol 34 (5) ◽  
pp. 539 ◽  
Author(s):  
Lizheng PAN ◽  
Aiguo SONG ◽  
Guozheng XU ◽  
Huijun LI ◽  
Baoguo XU

Sign in / Sign up

Export Citation Format

Share Document