Adaptive Finite Element-Discrete Element-Finite Volume Algorithm for Three-Dimensional Multiscale Propagation of Hydraulic Fracture Network Considering Hydro-Mechanical Coupling

Author(s):  
Yongliang Wang
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yongliang Wang

Purpose Optimized three-dimensional (3D) fracture networks are crucial for multistage hydrofracturing. To better understand the mechanisms controlling potential disasters as well as to predict them in 3D multistage hydrofracturing, some governing factors, such as fluid injection-induced stratal movement, compression between multiple hydraulic fractures, fracturing fluid flow, fracturing-induced microseismic damaged and contact slip events, must be properly simulated via numerical models. This study aims to analyze the stratal movement and microseismic behaviours induced by multistage propagation of 3D multiple hydraulic fractures. Design/methodology/approach Adaptive finite element–discrete element method was used to overcome the limitations of conventional finite element methods in simulating 3D fracture propagation. This new approach uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of fracture propagation path and computational efficiency. Engineering-scale numerical models were proposed that account for the hydro-mechanical coupling and fracturing fluid leak-off, to simulate multistage propagation of 3D multiple hydraulic fractures, by which the evolution of the displacement, porosity and fracture fields, as well as the fracturing-induced microseismic events were computed. Findings Stratal movement and compression between 3D multiple hydraulic fractures intensify with increasing proximity to the propagating fractures. When the perforation cluster spaces are very narrow, alternate fracturing can improve fracturing effects over those achieved via sequential or simultaneous fracturing. Furthermore, the number and magnitude of microseismic events are directly proportional to the stratal movement and compression induced by multistage propagation of fracturing fracture networks. Originality/value Microseismic events induced by multistage propagation of 3D multiple hydraulic fractures and perforation cluster spaces and fracturing scenarios that impact the deformation and compression among fractures in porous rock matrices are well predicted and analyzed.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yongliang Wang ◽  
Yang Ju ◽  
Yongming Yang

Hydrofracturing technology of perforated horizontal well has been widely used to stimulate the tight hydrocarbon reservoirs for gas production. To predict the hydraulic fracture propagation, the microseismicity can be used to infer hydraulic fractures state; by the effective numerical methods, microseismic events can be addressed from changes of the computed stresses. In numerical models, due to the challenges in accurately representing the complex structure of naturally fractured reservoir, the interaction between hydraulic and pre-existing fractures has not yet been considered and handled satisfactorily. To overcome these challenges, the adaptive finite element-discrete element method is used to refine mesh, effectively identify the fractures propagation, and investigate microseismic modelling. Numerical models are composed of hydraulic fractures, pre-existing fractures, and microscale pores, and the seepage analysis based on the Darcy’s law is used to determine fluid flow; then moment tensors in microseismicity are computed based on the computed stresses. Unfractured and naturally fractured models are compared to assess the influences of pre-existing fractures on hydrofracturing. The damaged and contact slip events were detected by the magnitudes, B-values, Hudson source type plots, and focal spheres.


2013 ◽  
Vol 387 ◽  
pp. 159-163
Author(s):  
Yi Chern Hsieh ◽  
Minh Hai Doan ◽  
Chen Tai Chang

We present the analyses of dynamics behaviors on a stroller wheel by three dimensional finite element method. The vibration of the wheel system causes by two different type barriers on the road as an experiment design to mimic the real road conditions. In addition to experiment analysis, we use two different packages to numerically simulate the wheel system dynamics activities. Some of the simulation results have good agreement with the experimental data in this research. Other interesting data will be measured and analyzed by us for future study and we will investigate them by using adaptive finite element method for increasing the precision of the computation results.


2001 ◽  
Author(s):  
Abhay A. Watwe ◽  
Ravi S. Prasher

Abstract Traditional methods of estimating package thermal performance employ numerical modeling using commercially available finite-volume or finite-element tools. Use of these tools requires training and experience in thermal modeling. This methodology restricts the ability of die designers to quickly evaluate the thermal impact of their die architecture due to the added throughput time required to enlist the services of a thermal analyst. This paper describes the development of an easy to use spreadsheet tool, which performs quick-turn numerical evaluations of the impact of non-uniform die heating. The tool employs well-established finite-volume numerical techniques to solve the steady-state, three-dimensional Fourier equation of conduction in the package geometry. Minimal input data is required and the inputs are customized using visual basic pull-down menus to assist die designers who may not be thermal experts. Data showing comparison of the estimates from the spreadsheet tool with that obtained from a conventional analysis using the commercially available finite element code ANSYS™ is also presented.


Sign in / Sign up

Export Citation Format

Share Document