Determination of Throttle Setpoint Control of Turbo-Charged GDI Engine Based on Newton Raphson Iteration

Author(s):  
Long Qin ◽  
Fanwu Zhang ◽  
Lei Liu ◽  
Chunjiao Zhang ◽  
Jianbo Zheng ◽  
...  
2004 ◽  
Vol 59 (9) ◽  
pp. 621-622 ◽  
Author(s):  
Fatih Ucun ◽  
Vesile Gūçlü

The force constants of the internal coordinates of nonlinear XY2 molecules in the gas-phase were calculated by using the GF matrix method. The matrix solution was carried out by means a computer program built relative to the Newton-Raphson method and the calculations were listed in a table. The force constants of some molecules in the liquidand solid- phase were also found and compared with these ones, and it was seen that the force constants for more condensed phase are lower as in an agreement with having its lower frequency.


2021 ◽  
Vol 2 (1) ◽  
pp. 37-45
Author(s):  
Riza Adrian Ibrahim ◽  
Sukono Sukono ◽  
Riaman Riaman

Extreme distribution is the distribution of a random variable that focuses on determining the probability of small values in the tail areaof the distribution. This distribution is widely used in various fields, one of which is reinsurance. An outbreak catastrophe is non-natural disaster that can pose an extreme risk of economic loss to a country that is exposed to it. To anticipate this risk, the government of a country can insure it to a reinsurance company which is then linkedto bonds in the capital market so that new securities are issued, namely outbreakcatastrophe bonds. In pricing, knowledge of the extreme distribution of economic losses due to outbreak catastrophe is indispensable. Therefore, this study aims to determine the extreme distribution model of economic losses due to outbreak catastrophe whose models will be determined by the approaches and methods of Extreme Value Theory and Peaks Over Threshold, respectively. The threshold value parameter of the model will be estimated by Kurtosis Method, while the other parameters will be estimated with Maximum Likelihood Estimation Method based on Newton-Raphson Iteration. The result of the research obtained is the resulting model of extreme value distribution of economic losses due to outbreak catastrophe that can be used by reinsurance companies as a tool in determining the value of risk in the outbreak catastrophe bonds.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jingyu Pei ◽  
Xiaoping Wang ◽  
Leen Zhang ◽  
Yu Zhou ◽  
Jinyuan Qian

Purpose This paper aims to provide a series of new methods for projecting a three-dimensional (3D) object onto a free-form surface. The projection algorithms presented can be divided into three types, namely, orthogonal, perspective and parallel projection. Design/methodology/approach For parametric surfaces, the computing strategy of the algorithm is to obtain an approximate solution by using a geometric algorithm, then improve the accuracy of the approximate solution using the Newton–Raphson iteration. For perspective projection and parallel projection on an implicit surface, the strategy replaces Newton–Raphson iteration by multi-segment tracing. The implementation takes two mesh objects as an example of calculating an image projected onto parametric and implicit surfaces. Moreover, a comparison is made for orthogonal projections with Hu’s and Liu’s methods. Findings The results show that the new method can solve the 3D objects projection problem in an effective manner. For orthogonal projection, the time taken by the new method is substantially less than that required for Hu’s method. The new method is also more accurate and faster than Liu’s approach, particularly when the 3D object has a large number of points. Originality/value The algorithms presented in this paper can be applied in many industrial applications such as computer aided design, computer graphics and computer vision.


Author(s):  
Elkhan Nariman Sabziev

The problem of plotting the flight path of an aircraft based on flight data containing numerous measurement errors is investigated. A theoretical (continuous) model of the flight data fusion problem is proposed in the form of a boundary value problem for a system of differential equations with unknown coefficients. The application of the Newton–Raphson iteration method for calculating the sought-for coefficients is described.


Sign in / Sign up

Export Citation Format

Share Document