scholarly journals Calculation of Flight Data Fusion Coefficients Using Newton–Raphson Iterations

Author(s):  
Elkhan Nariman Sabziev

The problem of plotting the flight path of an aircraft based on flight data containing numerous measurement errors is investigated. A theoretical (continuous) model of the flight data fusion problem is proposed in the form of a boundary value problem for a system of differential equations with unknown coefficients. The application of the Newton–Raphson iteration method for calculating the sought-for coefficients is described.

2021 ◽  
pp. 137-145
Author(s):  
A. Kravtsov ◽  
◽  
D. Levkin ◽  
O. Makarov ◽  
◽  
...  

The article presents the theoretical and methodological principles for forecasting and mathematical modeling of possible risks in technological and biotechnological systems. The authors investigated in details the possible approach to the calculation of the goal function and its parameters. Considerable attention is paid to substantiating the correctness of boundary value problems and Cauchy problems. In mechanics, engineering, and biology, Cauchy problems and boundary value problems of differential equations are used to model physical processes. It is important that differential equations have a single physically sound solution. The authors of this article investigate the specific features of boundary value problems and Cauchy problems with boundary conditions in a two-point medium, and determine the conditions for the correctness of such problems in the spaces of power growth functions. The theory of pseudo-differential operators in the space of generalized functions was used to prove the correctness of boundary value problems. The application of the obtained results will make it possible to guarantee the correctness of mathematical models built in conditions of uncertainty and possible risks. As an example of a computational mathematical model that describes the state of the studied object of non-standard shape, the authors considered the boundary value problem of the system of differential equations of thermal conductivity for the embryo under the action of a laser beam. For such a boundary value problem, it is impossible to guarantee the existence and uniqueness of the solution of the system of differential equations. To be sure of the existence of a single solution, it is necessary either not to take into account the three-layer structure of the microbiological object, or to determine the conditions for the correctness of the boundary value problem. Applying the results obtained by the authors, the correctness of the boundary value problem of systems of differential equations of thermal conductivity for the embryo is proved taking into account the three-layer structure of the microbiological object. This makes it possible to increase the accuracy and speed of its implementation on the computer. Key words: forecasting, risk, correctness, boundary value problems, conditions of uncertainty


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
J. Biazar ◽  
M. Shahbala ◽  
H. Ebrahimi

Pollution has become a very serious threat to our environment. Monitoring pollution is the first step toward planning to save the environment. The use of differential equations of monitoring pollution has become possible. In this paper the pollution problem of three lakes with interconnecting channels has been studied. The variational iteration method has been applied to compute an approximate solution of the system of differential equations, governing on the problem. Three different types of input models: sinusoidal, impulse, and step will be considered for monitoring the pollution in the lakes. The results are compared with those obtained by Adomian decomposition method. This comparison reveals that the variational iteration method is easier to be implemented.


Author(s):  
K.P. Pramod

In this article we have proposed a technique for solving the fifth order boundary value problem as a coupled pair of boundary value problems. We have considered fifth order boundary value problem in ordinary differential equation for the development of the numerical technique. There are many techniques for the numerical solution of the problem considered in this article. Thus we considered the application of the finite difference method for the numerical solution of the problem. In this article we transformed fifth order differential problem into system of differential equations of lower order namely one and four. We discretized the system of differential equations into considered domain of the problem. Thus we got a system of algebraic equations. For the numerical solution of the problem, we have the system of algebraic equations. The solution of the algebraic equations is an approximate solution of the problem considered. Moreover we get numerical approximation of first and second derivative as a byproduct of the proposed method. We have shown that proposed method is convergent and order of accuracy of the proposed method is at lease quadratic. The numerical results obtained in computational experiment on the test problems approve the efficiency and accuracy of the method.


2017 ◽  
Vol 2 (2) ◽  
pp. 06
Author(s):  
Bouchra Benabdelkrim ◽  
Ali Benatillah

Photovoltaic modules operate under a large range of conditions. This combined with the fact that manufacturers provide electrical parameters at specific conditions (STC). The present study proposes a comparison between single and double diode models of solar PV system and ensures the best suited model under specific environmental condition for accurate performance prediction. An important feature of these models is that its parameters can be determined using data commonly provided by module manufacturers on their published datasheets. Accurate determination of these parameters which arose from a diversification of models and methods dedicated to their estimations is still a challenge for researchers. In this paper the single and two diode models have been studied by mathematical methods based on simulated Newton-Raphson iteration method. Newton-Raphson iteration method is solved by MATLAB simulation. 


2020 ◽  
Vol 17 (1) ◽  
pp. 41-57
Author(s):  
Olga Nesmelova

We consider the boundary-value problem for a linear system of differential equations with matrix p-Laplacian, which is reduced to the traditional differential-algebraic system with an unknown in the form of the vector function. A generalization of various boundary-value problems for differential equations with p-Laplacian, which preserves the features of the solution of such problems, namely, the lack of uniqueness of the solution and, in this case, the dependence of the desired solution on an arbitrary function, is given.


Sign in / Sign up

Export Citation Format

Share Document