An Intelligent Phishing Detection Scheme Using Machine Learning

Author(s):  
Aaisha Makkar ◽  
Neeraj Kumar ◽  
Lakshit Sama ◽  
Satyam Mishra ◽  
Yash Samdani
2019 ◽  
Author(s):  
Arvind Abraham ◽  
Gilad Gressel ◽  
Krishnashree Achuthan

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4540
Author(s):  
Kieran Rendall ◽  
Antonia Nisioti ◽  
Alexios Mylonas

Phishing is one of the most common threats that users face while browsing the web. In the current threat landscape, a targeted phishing attack (i.e., spear phishing) often constitutes the first action of a threat actor during an intrusion campaign. To tackle this threat, many data-driven approaches have been proposed, which mostly rely on the use of supervised machine learning under a single-layer approach. However, such approaches are resource-demanding and, thus, their deployment in production environments is infeasible. Moreover, most previous works utilise a feature set that can be easily tampered with by adversaries. In this paper, we investigate the use of a multi-layered detection framework in which a potential phishing domain is classified multiple times by models using different feature sets. In our work, an additional classification takes place only when the initial one scores below a predefined confidence level, which is set by the system owner. We demonstrate our approach by implementing a two-layered detection system, which uses supervised machine learning to identify phishing attacks. We evaluate our system with a dataset consisting of active phishing attacks and find that its performance is comparable to the state of the art.


Author(s):  
Mohammad Mehdi Yadollahi ◽  
Farzaneh Shoeleh ◽  
Elham Serkani ◽  
Afsaneh Madani ◽  
Hossein Gharaee

Author(s):  
Aarti Chile ◽  
Mrunal Jadhav ◽  
Shital Thakare ◽  
Prof. Yogita Chavan

A fraud attempt to get sensitive and personal information like password, username, and bank details like credit/debit card details by masking as a reliable organization in electronic communication. The phishing website will appear the same as the legitimate website and directs the user to a page to enter personal details of the user on the fake website. Through machine learning algorithms one can improve the accuracy of the prediction. The proposed method predicts the URL based phishing websites based on features and also gives maximum accuracy. This method uses uniform resource locator (URL) features. We identified features that phishing site URLs contain. The proposed method employs those features for phishing detection. The proposed system predicts the URL based phishing websites with maximum accuracy.


Author(s):  
F. Castaño ◽  
M. Sánchez-Paniagua ◽  
J. Delgado ◽  
J. Velasco-Mata ◽  
A. Sepúlveda ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 10249
Author(s):  
Chien-Nguyen Nhu ◽  
Minho Park

Cloud computing is currently considered the most cost-effective platform for offering business and consumer IT services over the Internet. However, it is prone to new vulnerabilities. A new type of attack called an economic denial of sustainability (EDoS) attack exploits the pay-per-use model to scale up the resource usage over time to the extent that the cloud user has to pay for the unexpected usage charge. To prevent EDoS attacks, a few solutions have been proposed, including hard-threshold and machine learning-based solutions. Among them, long short-term memory (LSTM)-based solutions achieve much higher accuracy and false-alarm rates than hard-threshold and other machine learning-based solutions. However, LSTM requires a long sequence length of the input data, leading to a degraded performance owing to increases in the calculations, the detection time, and consuming a large number of computing resources of the defense system. We, therefore, propose a two-phase deep learning-based EDoS detection scheme that uses an LSTM model to detect each abnormal flow in network traffic; however, the LSTM model requires only a short sequence length of five of the input data. Thus, the proposed scheme can take advantage of the efficiency of the LSTM algorithm in detecting each abnormal flow in network traffic, while reducing the required sequence length of the input data. A comprehensive performance evaluation shows that our proposed scheme outperforms the existing solutions in terms of accuracy and resource consumption.


Sign in / Sign up

Export Citation Format

Share Document