Frequency Domain Based Robust Flutter Analysis of Swept Back Wing Using $$\mu $$ Method

Author(s):  
A. Arun Kumar ◽  
Amit Kumar Onkar
Meccanica ◽  
2019 ◽  
Vol 54 (14) ◽  
pp. 2207-2225 ◽  
Author(s):  
Sandeep Kumar ◽  
Amit Kumar Onkar ◽  
Manjuprasad Maligappa

2008 ◽  
Vol 54 (3/4) ◽  
pp. 41-49
Author(s):  
Sean McTavish ◽  
Ryan Beaubien ◽  
Daniel Feszty ◽  
Fred Nitzsche

Author(s):  
Hans-Peter Kersken ◽  
Graham Ashcroft ◽  
Christian Frey ◽  
Nina Wolfrum ◽  
Oliver Pütz

Both linear and nonlinear frequency domain methods have been applied successfully to the investigation of time-periodic phenomena in turbomachinery. Linear methods allow to perform flutter analysis of turbomachinery blade rows very efficiently. Nonlinear frequency domain method can be applied to flutter analysis as well. If a pseudo-time solution algorithm is employed as a solver the nonlinear frequency domain method takes advantage of the stabilizing effect of the nonlinear coupling of the harmonics. Additionally, it allows studying the influence of nonlinear effects on the flutter stability. A linear GMRes based method and a harmonic balance method using a pseudo-time solution approach are compared with respect to computational efficiency when applied to the flutter analysis of blades of a stationary gas turbine and a low pressure turbine of a jet engine. It is shown that both methods have their merits and limitation depending on the type of problem at hand.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Roque Corral ◽  
Michele Greco ◽  
Almudena Vega

Abstract A simple nondimensional model to describe the flutter onset of two-fin straight labyrinth seals (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006) is extended to account for nonisentropic flow perturbations. The isentropic relationship is replaced by the more general integral energy equation of the inter-fin cavity. A new expression for the Corral and Vega stability criterion is derived, which is very consistent with the previous model in the whole design space of the seal but for torsion centers located in the high-pressure side close to the seal. The new model formally depends on more dimensionless parameters since the existing parameter grouping of the previous model does not hold anymore, but this dependency is weak in relative terms. The model blends the limit where the discharge time of the inter-fin cavity is much longer than the vibration period, and the flow is nearly isentropic, and the opposite limit, where the perturbations are isothermic, gracefully. A few numerical examples obtained using a three-dimensional linearized frequency domain solver are included to support the model and show that the trends are correct, but the body of the numerical work will be presented in a separated article. The matching between the work-per-cycle obtained with the model and frequency domain solver is good. It is shown that some weird trends obtained using linearized unsteady simulations are qualitatively consistent with the current model but not with the previous one (Corral, R., and Vega, A., 2018, “Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background,” ASME J. Turbomach., 140(10), p. 121006). The largest differences between the new and the previous model are seen when the seal is supported at the high-pressure side.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Keisuke Otsuka ◽  
Yinan Wang ◽  
Kanjuro Makihara

Aircraft performance can be improved using morphing wing technologies, in which the wing can be deployed and folded under flight conditions, providing a wide flight envelope, good fuel efficiency, and reducing the space required to store the aircraft. Because the deployment of the wing is a nonlinear-coupled motion comprising large rigid body motion and large elastic deformation, a nonlinear folding-wing model is required to perform the necessary time-domain deployment simulation, while a linear model is required to perform the frequency-domain flutter analysis. The objective of this paper is to propose a versatile model that can be applied to both the time-domain and frequency-domain analyses of a folding wing, based on flexible multibody dynamics (MBD) using absolute nodal coordinate formulation (ANCF) and unsteady aerodynamics. This new versatile model expands the application range of the flexible MBD using ANCF in time-domain simulation, allowing it to express the coupled motion of extremely large elastic deformations and large rigid body motions that arise in next-generation aircraft. The time-domain deployment simulation conducted using the proposed model is useful for parametric deployment-system design because the model has improved calculation time. In the frequency-domain flutter analysis of a folding wing, the flutter speed obtained from the proposed model agrees with that obtained from an experiment, with an error of 4.0%, showing promise for application in next-generation aircraft design.


Sign in / Sign up

Export Citation Format

Share Document