folding wing
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Huaiyuan Gu ◽  
Fintan Healy ◽  
Djamel Rezgui ◽  
Jonathan E. Cooper

Author(s):  
S Rajat Singh ◽  
Amala Raja Rajeswar Gajula ◽  
Praneetha Maccha

The main purpose of a folding wing tip is to allow aerodynamically efficient high aspect ratio wing. To allow a wing tip to move in flight is to alleviate the loads and achieve lower wing weight or enable wing span to maximize. Thus reduces the induced drag and improve fuel efficiency. The folding wing tip may include spring devices in order to provide an additional gust loads alleviation ability in flight. A wing without a winglet produces wingtip vortices which increases drag as the air from the bottom surface of the wing (high pressure) tries to move to the upper surface (low pressure). To avoid this and have less vortices a winglet is used, around which the flow is same on both surfaces. A folding wingtip can be set at an angle of 0° to have maximum cruise performance and aspect ratio. If the wingtip is set in the range of 15°-50° it can increase lift during take-off. This folding wingtip can access any airport in the world because if it is folded at an angle of 90°, it can meet the gate requirements and restrictions of any airport. To study the performance of this mechanism, the wing tip was designed by using CATIA V5 software. The analysis of the wingtip at different angle of attacks was done using ANSYS and XFLR 5 softwares.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Chengyu Yue ◽  
Yonghui Zhao

The aeroelastic model of a folding wing varies with different configurations, so it actually represents a parameter-varying system. Firstly, a new approach based on interpolation of local models is proposed to generate the linear parameter-varying model of a folding wing. This model is capable of predicting the aeroelastic responses during the slow morphing process and is suitable for subsequent control synthesis. The underlying inconsistencies among local linear time-invariant (LTI) models are solved through the modal matching of structural modes and the special treatment of the rational functions in aerodynamic models. Once the local LTI models are represented in a coherent state-space form, the aeroservoelastic (ASE) model at any operating point can be immediately generated by the matrix interpolation technique. Next, based on the present ASE model, the design of a parameterized controller for suppressing the gust-induced vibration is studied. The receptance method is applied to derive fixed point controllers, and the effective independence method is adopted and modified for optimal sensor placement in variable configurations, which can avoid solving ill-conditioned feedback gains. Numerical simulation demonstrates the effectiveness of the proposed interpolation-based modeling approach, and the parameterized controller exhibits a good gust mitigation effect within a wide parameter-varying range. This paper provides an effective and practical solution for modeling and control of the parameterized aeroelastic system.


Author(s):  
Peng Zhang ◽  
Hao Chen ◽  
Dezheng Yin ◽  
Chaozheng Wang ◽  
Xi Cheng

2021 ◽  
Author(s):  
James Bluman ◽  
Ruth Talbott ◽  
Davonte Carter-Vault ◽  
Jonathan Willis ◽  
Wei Kang Soon ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-25
Author(s):  
L. Tiegang ◽  
C. Guoguang ◽  
L. Shuai

ABSTRACT A folding wing is a tactical missile launching device that needs to be miniaturised to facilitate storage, transportation, and launching; save missile and transportation space; and improve the combat capability of weapon systems. This study investigates the aeroelastic characteristics of the secondary longitudinal folding wing during the unfolding process. First, the Lagrange equation is used to establish the structural dynamics model of the folding wing, the kinematics characteristics during the deformation process are analysed, and the unfolding movement of the folding wing is obtained using the dynamic equations in the process. Then, the generalised unsteady aerodynamic force is calculated using the dipole grid method, and the multi-body dynamics equation of the folding wing is obtained. The initial angular velocity required for the deployment of the folding wing is analysed through structural model simulation, and the influence of the initial angular velocity on the opening process is studied. Finally, aeroelastic flutter analysis is performed on the folding wing, and the physical model of the folding wing verified experimentally. Results show that the type of aeroelastic response is sensitive to the initial conditions and the way the folding wing opens.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 99
Author(s):  
Yun Gao ◽  
Ming Hu ◽  
Xiaohong Zhou ◽  
Mingzhong Zhang

The cable-spring folding wing is a novel type of rigid-flexible coupling structure for missiles, which is composed of several sets of deployable mechanisms, with each composed of a wheel-rope transmission system and a parallel spring driving mechanism. The movement of the cable is initiated by the driving force produced by parallel springs, which directly changes the magnitude and the distribution of the driving force. Therefore, the cable-spring folding wing system has the typical characteristics of strong nonlinearity and motion coupling. In addition, each deployable mechanism shares an identical structure, but the distribution of motion parameters is discrepant due to external loads. Asynchronous movement of the cable-spring folding wing will occur and become a significant issue, which is detrimental to the working performance and could even lead to failure. Focusing on these problems, the multi-body dynamics theoretical model and simulation model of deployable mechanism are established, the kinematic and dynamic characteristics of critical components are studied, and the key factors affecting the deployment performance are investigated. A new reliability method with an angular precision control for deployable mechanism is proposed based on the theoretical model. The effectiveness of the proposed model and method is verified by comparing it with the Monte Carlo method. On this basis, the reliability evaluation for cable-spring folding wing, comprehensively considering deployment performance and synchronization, is carried out.


Author(s):  
Y. Ni ◽  
W. Zhang ◽  
Y. Lv

To investigate the structural dynamic characteristics of a folding wing effectively, a fast structural dynamic modeling approach is proposed. Firstly, the interface compatible relationship of the traditional fixed interface component modal synthesis method is modified, and the internal force of the interface is completely expressed in the structural dynamic equation, so that the influence of the connection stiffness on the wing structure dynamics can be considered. Then, on the basis of the fixed interface component modal synthesis method, the main mode of fixed-loaded interface is introduced to establish the mixed-loaded interface component modal synthesis method, which makes it feasible to accurately reflect the influence of elasticity and inertia of fuselage and outer wing on inner wing. The structural dynamics modeling method based on two different kinds of component modal synthesis method analyzed and deduced in detail. The application of component modal synthesis method in the fast structural dynamics modeling of folding wing is achieved. The whole program is compiled in MATLAB. At the same time, the dynamic characteristics of the folding wing with different folding angles, different connections and different connection positions is investigated. The results of the method proposed in this paper are compared with the results of the repeated finite model established in MSC.NASTRAN to verify the effectiveness from the aspects of natural frequency and vibration mode.


Sign in / Sign up

Export Citation Format

Share Document