Prediction of Material Removal Rate and Surface Roughness in CNC Turning of Delrin Using Various Regression Techniques and Neural Networks and Optimization of Parameters Using Genetic Algorithm

Author(s):  
Susheem Kanwar ◽  
Ranganath M. Singari ◽  
Vipin
Author(s):  
Nehal Dash ◽  
Apurba Kumar Roy ◽  
Sanghamitra Debta ◽  
Kaushik Kumar

Plasma Arc Cutting (PAC) process is a widely used machining process in several fabrication, construction and repair work applications. Considering gas pressure, arc current and torch height as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness would be considered as factors that determines the quality, machining time and machining cost. In order to reduce the number of experiments Design of Experiments (DOE) would be carried out. In later stages applications of Genetic Algorithm (GA) and Fuzzy Logic would be used for Optimization of process parameters in Plasma Arc Cutting (PAC). The output obtained would be minimized and maximized for Surface Roughness and Material Removal Rate respectively using Genetic Algorithm (GA) and Fuzzy Logic.


2011 ◽  
Vol 335-336 ◽  
pp. 535-540 ◽  
Author(s):  
Veluswamy Muthuraman ◽  
Raju Ramakrishnan

The prediction of optimal machining conditions for required surface roughness and material removal rate (MRR) plays a very significant role in process planning of wire electrical discharge machining (WEDM). Artificial neural networks (ANN) are widely applied to predict the performance characteristics of complex machining process like WEDM very accurately. This present work deals with the features of cutting operation by WEDM of tungsten carbide- cobalt composite(WC – Co) and an artificial neural networks(ANN) model in terms of machining parameters, developed to predict surface roughness(Ra) and material removal rate (MRR).The experiment was planned as per Taguchi’s L 27 orthogonal array. The predictive capacity of the models was validated. The test results indicate that the proposed models could adequately describe the performance indicators with the limits of the factors that are being investigated. Finally the accuracy of the developed ANN model was compared to the experimental values. It was observed that the proposed ANN model is good.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Sign in / Sign up

Export Citation Format

Share Document