Impact and Scope of Electric Power Generation Demand Using Renewable Energy Resources Due to COVID-19

Author(s):  
Manish Kumar ◽  
Muralidhar Nayak Bhukya ◽  
Anshuman ◽  
Sachin
Author(s):  
Geetha Kamurthy ◽  
Sreenivasappa Bhupasandra Veeranna

The extensive use of fossil fuel is destroying the balance of nature that could lead to many problems in the forthcoming era. Renewable energy resources are a ray of hope to avoid possible destruction. Smart grid and distributed power generation systems are now mainly built with the help of renewable energy resources. The integration of renewable energy production system with the smart grid and distributed power generation is facing many challenges that include addressing the issue of isolation and power quality. This paper presents a new approach to address the aforementioned issues by proposing a hybrid bypass technique concept to improve the overall performance of the grid-tied inverter in solar power generation. The topology with the proposed technique is presented using traditional H5, oH5 and H6 inverter. Comparison of topologies with literature is carried out to check the feasibility of the method proposed. It is found that the leakage current of all the proposed inverters is 9 mA and total harmonic distortion is almost about 2%. The proposed topology has good efficiency, common mode and differential mode characteristics.


Author(s):  
Tomoki Taniguchi ◽  
Shigesuke Ishida ◽  
Yoshimasa Minami

This paper addressed assessing feasibility of hybrid use of ocean renewable energy, such as wave and wind energy around Japanese coast. At first, wave and wind energy theoretical potentials were calculated and, in the second step, correlation coefficient between wave and wind energy was computed around Japanese coast. Sea area suitable for hybrid use of ocean renewable energy resources is supposed to have high potential for some types of energy resources. Furthermore, correlation of power generation between wave and wind energy resources should be low because one energy resource needs to complement another one for stabilizing power generation. Based on the assumptions, feasibility of wind and wave energy was evaluated on some sea areas where R&D project are ongoing.


Author(s):  
Sajjad Akbar ◽  
Shahab Khusnood

Electricity is the engine for the growth of economy of any country. Total installed electricity generation capacity of Pakistan is presently approx 20,000 MW as given in Table-1. Despite this, almost 40% of the population is without electricity. Pakistan has been blessed with tremendous resources for electrical power generation with hydel, coal, renewable energy resources and Nuclear power. Hydel, coal potential of more than 40,000 MW and 10,000 MW are available but only 15% of hydroelectric potential has been harnessed so for where as only 150 MW power plant on indigenous coal has been set up. To exploit Pakistan hydel and coal resources for power generation large investments are needed which Pakistan economy can not afford. Govt. of Pakistan has created an organization of private power and infrastructure board (PPIB) to facilitate private sector in the participation of power generator. PPIB is tapping the resources and facilitating the private sector for establishment of power projects. Pakistan is collaborating with China for establishment of Nuclear Power Plants and plan to generate up to 10,000 MW by year 2025. Renewable energy resources are also required to be tapped. This paper will focus on the Pakistan power generation potential by utilizing local resources keeping in view the next 20 year supply and demand position.


1996 ◽  
Vol 118 (3) ◽  
pp. 141-145 ◽  
Author(s):  
D. Jenkins ◽  
R. Winston ◽  
J. Bliss ◽  
J. O’Gallagher ◽  
A. Lewandowski ◽  
...  

We have achieved a 50,000 ± 3,000 times concentration of sunlight using a unique dielectric nonimaging concentrator in an experiment performed at the National Renewable Energy Laboratory. The scale of the experiment is several times larger than that of previous experiments. Total output power approaching 1 kW passes through a 4.6 mm diameter aperture. An extractor tip is added to the concentrator profile which allows measurement of flux levels using an air calorimeter. This new device has the potential to allow the use of dielectric concentrators at larger scale for thermal electric power generation. We report on the implications of this experiment for the future use of dielectric concentrators.


Author(s):  
John Vourdoubas

Use of renewable energies in rural areas in the island of Crete, Greece has been investigated. Crete has rich indigenous renewable energy resources which are currently utilized for covering part of its energy requirements. Various renewable energy technologies used for heat and electricity generation in the island have been examined. Solar energy, wind energy, hydro power, biomass, and low enthalpy geothermal energy are already used. The total installed electric power of renewable energies in Crete, located mostly in rural areas, is approximately at 30% of the total electric power installed. They currently generate more than 20% of the island’s annual electricity needs. More renewable energy applications are foreseen in the future in rural areas in Crete as soon as its electric grid will be interconnected with the country’s continental grid. New renewable energy technologies, which are not currently used, could generate in the future heat, cooling, electricity, and vehicle’s fuels in the island. Their use will have positive impacts including the promotion of energy investments, lower use of imported and polluting fossil fuels, de-carbonization of the island’s energy sector as well as creation of new local jobs. It is indicated that the rich renewable energy resources in Crete could provide almost all of its annual energy needs. This will result in Crete’s transformation to a low or zero carbon economy in accordance with EU targets for zero carbon emissions in the next decades complying with the global goal for climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document