An Ontology for Fire Building Evacuation

2021 ◽  
pp. 975-985
Author(s):  
Joaquim Neto ◽  
A. Jorge Morais ◽  
Ramiro Gonçalves ◽  
António Leça Coelho
Keyword(s):  
2018 ◽  
Vol 97 ◽  
pp. 82-95 ◽  
Author(s):  
Alan Poulos ◽  
Felipe Tocornal ◽  
Juan Carlos de la Llera ◽  
Judith Mitrani-Reiser

Author(s):  
Jake Pauls

The events of September 2001, 2001, plus the events' technical and political aftermath have helped to identify an unfortunate lack of research into building evacuation. The relative dearth of research is ironic given evacuation's central role in mitigation for a range of emergencies and its prominence in environmental design requirements in building codes and standards. The field of human factors has much to offer, for example, in a philosophical or strategic focus on human-centered design as well in more-prosaic issues such as exit stair width and handrail provision. Much of the available research addresses fairly low-level ergonomic issues such as exit stair width in relation to egress capacity and the impact on evacuation time. in addition to more-sophisticated research into the relatively simple issues, ahead lies more-difficult research relating to strategic issues and the provision of information to building occupants in emergencies, occupants' situational awareness generally, and the many social interactions—in seldom-considered environmental contexts—that are at the heart of major evacuations of large buildings such as in the case of the World Trade Center.


Author(s):  
W. Chan ◽  
C. Armenakis

The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee’s location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI’s ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.


Sign in / Sign up

Export Citation Format

Share Document