Automatic Capacitor Switching Method for Power Factor Improvement with HMI Interface and Cloud Data Logger

Author(s):  
Risfendra ◽  
Gheri Febri Ananda
Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2172 ◽  
Author(s):  
Antonio Cano Ortega ◽  
Francisco Jose Sánchez Sutil ◽  
Jesús De la Casa Hernández

The main objective of this paper is to compensate power factor using teaching learning based optimization (TLBO), determine the capacitor bank optimization (CBO) algorithm, and monitor a system in real-time using cloud data logging (CDL). Implemented Power Factor Compensation and Monitoring System (PFCMS) calculates the optimal capacitor combination to improve power factor of the installation by measure of voltage, current, and active power. CBO algorithm determines the best solution of capacitor values to install, by applying TLBO in different phases of the algorithm. Electrical variables acquired by the sensors and the variables calculated are stored in CDL using Google Sheets (GS) to monitor and analyse the installation by means of a TLBO algorithm implemented in PFCMS, that optimizes the compensation power factor of installation and determining which capacitors are connected in real time. Moreover, the optimization of the power factor in facilities means economic and energy savings, as well as the improvement of the quality of the operation of the installation.


2016 ◽  
Vol 136 (12) ◽  
pp. 991-996 ◽  
Author(s):  
Masataka Minami ◽  
Takeshi Ito ◽  
Shin-ichi Motegi ◽  
Masakazu Michihira

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2582 ◽  
Author(s):  
Samuel Lotsu ◽  
Yuichiro Yoshida ◽  
Katsufumi Fukuda ◽  
Bing He

Confronting an energy crisis, the government of Ghana enacted a power factor correction policy in 1995. The policy imposes a penalty on large-scale electricity users, namely, special load tariff (SLT) customers of the Electricity Company of Ghana (ECG), whose power factor is below 90%. This paper investigates the impact of this policy on these firms’ power factor improvement by using panel data from 183 SLT customers from 1994 to 1997 and from 2012. To avoid potential endogeneity, this paper adopts a regression discontinuity design (RDD) with the power factor of the firms in the previous year as a running variable, with its cutoff set at the penalty threshold. The result shows that these large-scale electricity users who face the penalty because their power factor falls just short of the threshold are more likely to improve their power factor in the subsequent year, implying that the power factor correction policy implemented by Ghana’s government is effective.


2021 ◽  
Author(s):  
Xiao Liu ◽  
Yutong Wang ◽  
Huahui Lou ◽  
Hesong Cui ◽  
Shoudao Huang

Sign in / Sign up

Export Citation Format

Share Document