scholarly journals Power Factor Compensation Using Teaching Learning Based Optimization and Monitoring System by Cloud Data Logger

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2172 ◽  
Author(s):  
Antonio Cano Ortega ◽  
Francisco Jose Sánchez Sutil ◽  
Jesús De la Casa Hernández

The main objective of this paper is to compensate power factor using teaching learning based optimization (TLBO), determine the capacitor bank optimization (CBO) algorithm, and monitor a system in real-time using cloud data logging (CDL). Implemented Power Factor Compensation and Monitoring System (PFCMS) calculates the optimal capacitor combination to improve power factor of the installation by measure of voltage, current, and active power. CBO algorithm determines the best solution of capacitor values to install, by applying TLBO in different phases of the algorithm. Electrical variables acquired by the sensors and the variables calculated are stored in CDL using Google Sheets (GS) to monitor and analyse the installation by means of a TLBO algorithm implemented in PFCMS, that optimizes the compensation power factor of installation and determining which capacitors are connected in real time. Moreover, the optimization of the power factor in facilities means economic and energy savings, as well as the improvement of the quality of the operation of the installation.

2017 ◽  
Vol 2 (2) ◽  
pp. 102-109
Author(s):  
Mouloud Bouaraki ◽  
Abdelmadjid RECIOUI

This paper presents a method to optimize the placement of capacitors in a distribution system to correct power factor and reduce losses and costs. The method uses the Teaching Learning Based Optimization (TLBO) method to solve the optimal capacitor placement problem. The combinatorial nature of the problem suggests the employment of a mixed binary and real valued TLBO algorithm. To validate the efficiency of the method, it was applied to various examples (different bus systems) and simulation results are discussed.


2014 ◽  
Vol 7 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Ivars Beinarts ◽  
Uldis Grunde ◽  
Andris Jakovics

Abstract In this paper the advanced monitoring system of multiple environmental parameters is presented. The purpose of the system is a long-term estimation of energy efficiency and sustainability for the research test stands which are made of different building materials. Construction of test stands, and placement of main sensors are presented in the first chapter. The structure of data acquisition system includes a real-time interface with sensors and a data logger that allows to acquire and log data from all sensors with fixed rate. The data logging system provides a remote access to the processing of the acquired data and carries out periodical saving at a remote FTP server using an Internet connection. The system architecture and the usage of sensors are explained in the second chapter. In the third chapter implementation of the system, different interfaces of sensors and energy measuring devices are discussed and several examples of data logger program are presented. Each data logger is reading data from analog and digital channels. Measurements can be displayed directly on a screen using WEB access or using data from FTP server. Measurements and acquired data graphical results are presented in the fourth chapter in the selected diagrams. The benefits of the developed system are presented in the conclusion.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zong-Sheng Wu ◽  
Wei-Ping Fu ◽  
Ru Xue

Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Zailei Luo ◽  
Xueming He ◽  
Xuedong Chen ◽  
Xin Luo ◽  
Xiaoqing Li

Teaching-learning-based optimization (TLBO) algorithm is a new kind of stochastic metaheuristic algorithm which has been proven effective and powerful in many engineering optimization problems. This paper describes the application of a modified version of TLBO algorithm, MTLBO, for synthesis of thinned concentric circular antenna arrays (CCAAs). The MTLBO is adjusted for CCAA design according to the geometry arrangement of antenna elements. CCAAs with uniform interelement spacing fixed at half wavelength have been considered for thinning using MTLBO algorithm. For practical purpose, this paper demonstrated SLL reduction of thinned CCAAs in the whole regular and extended space other than the phi = 0° plane alone. The uniformly and nonuniformly excited CCAAs have been discussed, respectively, during the simulation process. The proposed MTLBO is very easy to be implemented and requires fewer algorithm specified parameters, which is suitable for concentric circular antenna array synthesis. Numerical results clearly show the superiority of MTLBO algorithm in finding optimum solutions compared to particle swarm optimization algorithm and firefly algorithm.


2021 ◽  
Vol 8 (6) ◽  
pp. 1255
Author(s):  
Asih Setiarini ◽  
Mahatma Widya Laksana ◽  
Basuki Winarno

<p class="Abstract">Lari merupakan olahraga yang efektif untuk membakar kalori. Namun, olahraga ini mempunyai dampak negatif bagi pelari yang mampu memicu serangan jantung sehingga dibutuhkan alat kesehatan untuk mendeteksi frekuensi denyut nadi saat berlari. Tujuan penelitian ini merancang sistem monitoring frekuensi denyut nadi secara real time pada pelari dengan menggunakan easily plugin pulse sensor berbasis photoplethysmographic. Sensor tersebut terdiri atas transmitter dan receiver infrared yang dipasang pada ujung jari tengah yang mana melalui jaringan kulit mampu mendeteksi volume darah. Fitur buzzer digunakan sebagai alarm jika denyut jantung mencapai 170 Beat Per Minute (BPM). Alat ini juga dilengkapi dengan aplikasi Android yang memudahkan pihak lain memonitoring keadaan denyut nadi pelari. Bluetooth HC-05 sebagai modul komunikasi data antara Arduino dan Android. Alat yang dirancang memiliki error maksimum sebesar 0,73% berdasarkan data percobaan dari 5 partisipan. Berdasarkan hasil pengujian, sistem monitoring frekuensi denyut nadi secara real time mampu mendeteksi serangan jantung saat berlari dan adanya fitur data logger digunakan untuk rekap medis keadaan frekuensi denyut jantung saat berlari tanpa menggunakan aplikasi smartphone Android.</p><p class="Abstract"> </p><p class="Abstract"><em><strong>Abstract</strong></em></p><p class="Judul2"><em>Running is the most popular workout around the world, because the most accessible, the cheapest and organized sport. However, running is dangerous in people suffering from heart disease. Hence, the medical device to detect heart failure for runners is required. In this paper, a monitoring system and data logger for detecting heart pulse by using easily plugin pulse sensor heart beat and its implementation for runners is newly proposed. The proposed method of sensor to detect the heart beat by using Photoplesthymograph principle. The sensor consists of transmitter and receiver infrared through to skin tissue to detect the blood volume. Different to previous work, the proposed device can be real time to monitor runners while running and have alarm when their heart beat reach 170 BPM. This device is also equipped with an Android application that facilitate other parties to monitor the runner’s heart beat. By using OMRON HEM-7203 as comparison devices, the rate error of measurement result is 0,086% within 5 participans. The proposed device is suitable for heart pulse monitoring system for runners in real time to reduce the heart attack while running.</em><em> </em></p><p class="Abstract"><em><strong><br /></strong></em></p>


Sign in / Sign up

Export Citation Format

Share Document