Model-Free State Feedback Controller Tuning for A Liquid Slosh Suppression System

Author(s):  
Nurul Najihah Zulkifli ◽  
Mohd Syakirin Ramli ◽  
Hamzah Ahmad ◽  
Addie Irawan
2019 ◽  
Vol 9 (9) ◽  
pp. 1807 ◽  
Author(s):  
Radac ◽  
Precup

This paper proposes a neural network (NN)-based control scheme in an Adaptive Actor-Critic (AAC) learning framework designed for output reference model tracking, as a representative deep-learning application. The control learning scheme is model-free with respect to the process model. AAC designs usually require an initial controller to start the learning process; however, systematic guidelines for choosing the initial controller are not offered in the literature, especially in a model-free manner. Virtual Reference Feedback Tuning (VRFT) is proposed for obtaining an initially stabilizing NN nonlinear state-feedback controller, designed from input-state-output data collected from the process in open-loop setting. The solution offers systematic design guidelines for initial controller design. The resulting suboptimal state-feedback controller is next improved under the AAC learning framework by online adaptation of a critic NN and a controller NN. The mixed VRFT-AAC approach is validated on a multi-input multi-output nonlinear constrained coupled vertical two-tank system. Discussions on the control system behavior are offered together with comparisons with similar approaches.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Firas Turki ◽  
Hassène Gritli ◽  
Safya Belghith

This paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. The periodic forcing input is considered as a persistent external disturbance. The motion of the impacting oscillator is modeled by an impulsive hybrid dynamics. Thus, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only considering the region within which the state evolves. We show that the stability conditions are first expressed in terms of bilinear matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and simulations are given. We show the effectiveness of the designed state-feedback controller in the robust stabilization of the position of the impact mechanical oscillator under the disturbance.


Author(s):  
Qinghui Du

The problem of adaptive state-feedback stabilization of stochastic nonholonomic systems with an unknown time-varying delay and perturbations is studied in this paper. Without imposing any assumptions on the time-varying delay, an adaptive state-feedback controller is skillfully designed by using the input-state scaling technique and an adaptive backstepping control approach. Then, by adopting the switching strategy to eliminate the phenomenon of uncontrollability, the proposed adaptive state-feedback controller can guarantee that the closed-loop system has an almost surely unique solution for any initial state, and the equilibrium of interest is globally asymptotically stable in probability. Finally, the simulation example shows the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document