Balanced Cluster Head (CH) Selection in Four-Level Heterogeneous Wireless Sensor Networks (WSN’s)

2021 ◽  
pp. 827-843
Author(s):  
V. Baby Shalini
Author(s):  
Basim Abood ◽  
Abeer Naser Faisal ◽  
Qasim Abduljabbar Hamed

In this paper, elliptic curves Diffie Hellman-Rivest Shamir Adleman algorithm (ECDH-RSA) is a novel encryption method was proposed, which based on ECDH and RSA algorithm to secure transmitted data in heterogeneous wireless sensor networks (HWSNs). The proposed encryption is built under cheesboard clustering routing method (CCRM). The CCRM used to regulate energy consumption of the nodes. To achieve good scalability and performance by using limited powerful max-end sensors besides a large powerful of min-end sensors. ECDH is used for the sharing of public and private keys because of its ability to provide small key size high protection. The proposed authentication key is generated by merging it with the reference number of the node, and distance to its cluster head (CH). Decreasing the energy intake of CHs, RSA encryption allows CH to compile the tha data which encrypted with no need to decrypt it. The results of the simulation show that the approach could maximize the life of the network by nearly (47%, and 35.7%) compare by secure low-energy adaptive clustering hierarchy (Sec-LEACH and SL-LEACH) approches respectively.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3835 ◽  
Author(s):  
Muhammad Sohail ◽  
Shafiullah Khan ◽  
Rashid Ahmad ◽  
Dhananjay Singh ◽  
Jaime Lloret

Internet of things (IoT) is a very important research area, having many applications such as smart cities, intelligent transportation system, tracing, and smart homes. The underlying technology for IoT are wireless sensor networks (WSN). The selection of cluster head (CH) is significant as a part of the WSN’s optimization in the context of energy consumption. In WSNs, the nodes operate on a very limited energy source, therefore, the routing protocols designed must meet the optimal utilization of energy consumption in such networks. Evolutionary games can be designed to meet this aspect by providing an adequately efficient CH selection mechanism. In such types of mechanisms, the network nodes are considered intelligent and independent to select their own strategies. However, the existing mechanisms do not consider a combination of many possible parameters associated with the smart nodes in WSNs, such as remaining energy, selfishness, hop-level, density, and degree of connectivity. In our work, we designed an evolutionary game-based approach for CH selection, combined with some vital parameters associated with sensor nodes and the entire networks. The nodes are assumed to be smart, therefore, the aspect of being selfish is also addressed in this work. The simulation results indicate that our work performs much better than typical evolutionary game-based approaches.


Author(s):  
Shahzad Hassan ◽  
Maria Ahmad

In Wireless Sensor Networks the nodes have restricted battery power and the exhaustion of battery depends on various issues. In recent developments, various clustering protocols have been proposed to diminish the energy depletion of the node and prolong the network lifespan by reducing power consumption. However, each protocol is inappropriate for heterogeneous wireless sensor networks. The efficiency of heterogeneous wireless sensor networks declines as changing the node heterogeneity. This paper reviews cluster head selection criteria of various clustering protocols for heterogeneous wireless sensor networks in terms of node heterogeneity and compares the performance of these protocols on several parameters like clustering technique, cluster head selection criteria, nodes lifetime, energy efficiency under two-level and three-level heterogeneous wireless sensor networks protocols Stable Election Protocol (SEP), Zonal-Stable Election Protocol (ZSEP), Distributed Energy-Efficient Clustering (DEEC), A Direct Transmission And Residual Energy Based Stable Election Protocol (DTRE-SEP), Developed Distributed Energy-Efficient Clustering (DDEEC), Zone-Based Heterogeneous Clustering Protocol (ZBHCP), Enhanced Distributed Energy Efficient Clustering (EDEEC), Threshold Distributed Energy Efficient Clustering (TDEEC), Enhanced Stable Election Protocol (SEP-E), and Threshold Stable Election Protocol (TSEP). The comparison has shown that the TDEEC has very effective results over other over two-level and three-level heterogeneous wireless sensor networks protocols and has extended the unstable region significantly. From simulations, it can also be proved that adding node heterogeneity can significantly increase the network life.


Author(s):  
Baghouri Mostafa ◽  
Chakkor Saad ◽  
Hajraoui Abderrahmane

The improvement of the lifetime of heterogeneous wireless sensor networks is a challenge for many researches. One of the most important protocols to achieve this goal is to divide the network into clusters that run by a single node called cluster head and the others have attached. However, all nodes must form the cluster including the nearest nodes to the base station which should be excluded from the clustering process. Furthermore these nodes consume more energy since each member node communicates directly with their cluster head and not with the base station. To eliminate these notes from cluster process, we need to formulate a new energy total of the network which depends on the number of these nodes. In this paper we propose a new technic to optimize this energy which basing on the firefly algorithm. The developed approach allows the boundary of the excluded nodes efficiently. Computer simulation in MATLAB proves the superiority of this method concerning the increase of the lifetime and the number of the received packet messages compared to the others protocols.


2020 ◽  
pp. 85-104
Author(s):  
Sunil Kumar ◽  
Priya Ranjan ◽  
Radhakrishnan Ramaswami ◽  
Malay Ranjan Tripathy

Wireless sensor networks are useful in various industrial, commercial, Internet of Things (IoT), Internet of Everything (IoE) and many important tracking purpose applications. Energy is a limited and not replaceable. Hence it is the most focused research area in the field of wireless sensor networks. In this paper, Cluster Based Energy Resource Efficient & Next Hop Knowledge based Routing Protocol (CBERERP) is proposed for multiple heterogeneous wireless sensor networks. For any routing protocol, energy resources generally depend on number of message exchanges, transmission of data and control packets among the various sensor nodes to reach an agreement. CBERERP uses distributed concept for selection of cluster head among of heterogeneous nodes and intelligent cluster formation to minimize the energy consumption. Further, the proposed protocol reduces energy using a routing technique which minimizes the hop distance, the number of transmission of data and the number of control packets.


Author(s):  
Sunil Kumar ◽  
Priya Ranjan ◽  
Radhakrishnan Ramaswami ◽  
Malay Ranjan Tripathy

Wireless sensor networks are useful in various industrial, commercial, Internet of Things (IoT), Internet of Everything (IoE) and many important tracking purpose applications. Energy is a limited and not replaceable. Hence it is the most focused research area in the field of wireless sensor networks. In this paper, Cluster Based Energy Resource Efficient & Next Hop Knowledge based Routing Protocol (CBERERP) is proposed for multiple heterogeneous wireless sensor networks. For any routing protocol, energy resources generally depend on number of message exchanges, transmission of data and control packets among the various sensor nodes to reach an agreement. CBERERP uses distributed concept for selection of cluster head among of heterogeneous nodes and intelligent cluster formation to minimize the energy consumption. Further, the proposed protocol reduces energy using a routing technique which minimizes the hop distance, the number of transmission of data and the number of control packets.


Sign in / Sign up

Export Citation Format

Share Document