A New Heuristic Algorithm for Economic Load Dispatch Incorporating Wind Power

2021 ◽  
pp. 47-65
Author(s):  
N. Karthik ◽  
A. K. Parvathy ◽  
R. Arul ◽  
K. Padmanathan
2021 ◽  
Vol 12 (3) ◽  
pp. 54-80
Author(s):  
Bikram Saha ◽  
Provas Kumar Roy ◽  
Barun Mandal

This article represents salp swarm algorithm (SSA) for the most favourable operating solution of economic load dispatch (ELD). For making the convergence first along with SSA, another optimization algorithm (i.e., BBO [biogeography;based optimization]) is also used. For lowering the operational cost, wind power is employed with thermal units. SSA is inspired by swarming behaviour of salp, which belongs to salpiside family. Salp possess a special kind of swarm while hunting for food and navigating. The recommended algorithm is executed on two systems of SIX units and 40 units. In both of the cases, load dispatch problem is carried out with renewable sources and also without renewable sources. Individually, BBO, SSA, and hybrid BBO-SSA are applied to all the test systems to justify effectiveness of hybrid BBO-SSA. Obtained results assure the prospective and advantages of recommended algorithm in contrast to algorithms mentioned in the article. Results come out to be very satisfying and reveal that hybrid BBO-SSA is a powerful algorithm to solve ELD problems.


2020 ◽  
Vol 9 (3) ◽  
pp. 24-38
Author(s):  
Cuong Dinh Tran ◽  
Tam Thanh Dao ◽  
Ve Song Vo

The cuckoo search algorithm (CSA), a new meta-heuristic algorithm based on natural phenomenon of the cuckoo species and Lévy flights random walk has been widely and successfully applied to several optimization problems so far. In the article, two modified versions of CSA, where new solutions are generated using two distributions including Gaussian and Cauchy distributions in addition to imposing bound by best solutions mechanisms are proposed for solving economic load dispatch (ELD) problems with multiple fuel options. The advantages of CSA with Gaussian distribution (CSA-Gauss) and CSA with Cauchy distribution (CSA-Cauchy) over CSA with Lévy distribution and other meta-heuristic are fewer parameters. The proposed CSA methods are tested on two systems with several load cases and obtained results are compared to other methods. The result comparisons have shown that the proposed methods are highly effective for solving ELD problem with multiple fuel options and/nor valve point effect.


Complexity ◽  
2014 ◽  
Vol 21 (4) ◽  
pp. 40-49 ◽  
Author(s):  
Oveis Abedinia ◽  
Ali Ghasemi ◽  
Nasser Ojaroudi

2016 ◽  
Vol 13 (3) ◽  
pp. 347-360 ◽  
Author(s):  
Amin Safari ◽  
Davoud Sheibai

This paper presents an efficient Artificial Bee Colony (ABC) algorithm for solving large scale economic load dispatch (ELD) problems in power networks. To realize the ELD, the valve-point loading effect, system load demand, power losses, ramp rate limits and prohibited operation zones are considered here. Simulations were performed on four different power systems with 3, 6, 15 and 40 generating units and the results are compared with two forms of power systems, one power system is with a wind power generator and other power system is without a wind power generator. The results of this study reveal that the proposed approach is able to find appreciable ELD solutions than those of previous algorithms.


2013 ◽  
Vol 333-335 ◽  
pp. 1233-1238
Author(s):  
Jing Wang ◽  
Yu Zhang ◽  
Kun Xia ◽  
Qiang Qiang Wang

With the disadvantages of volatility, intermittent and randomness of wind power, a research on constructing a fairly accurate prediction model is imperative to improve the quality of power system. Considering the optimization ability of heuristic algorithm and the regression ability of support vector machine, a HA-SVM model is constructed.Case study shows that, compared with other heuristic algorithms, the search efficiency and speed of differential evolution are good, and the prediction accuracy of the model is high.


Author(s):  
Homayoun Berahmandpour ◽  
Shahram Montaser Kouhsari ◽  
Hassan Rastegar

Sign in / Sign up

Export Citation Format

Share Document