Post-buckling Response of Functionally Graded Porous Plates Rested on Elastic Substrate via First-Order Shear Deformation Theory

2021 ◽  
pp. 761-779
Author(s):  
Le Thanh Hai ◽  
Nguyen Van Long ◽  
Tran Minh Tu ◽  
Chu Thanh Binh
Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Hossein Rahmani ◽  
Hossein Moeinkhah

In this paper, the first order shear deformation theory is used to derive an analytical formulation for shrink-fitted thick-walled functionally graded cylinders. It is assumed that the cylinders have constant Poisson’s ratio and the elastic modulus varies radially along the thickness with a power function. Furthermore, a finite element simulation is carried out using COMSOL Multiphysics, which has the advantage of defining material properties as analytical functions. The results from first order shear deformation theory are compared with the findings of both plane elasticity theory and FE simulation. The results of this study could be used to design and manufacture for elastic shrink-fitted FG cylinders.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Fuzhen Pang ◽  
Cong Gao ◽  
Jie Cui ◽  
Yi Ren ◽  
Haichao Li ◽  
...  

This paper describes a unified solution to investigate free vibration solutions of functionally graded (FG) spherical shell with general boundary restraints. The analytical model is established based on the first-order shear deformation theory, and the material varies uniformly along the thickness of FG spherical shell which is divided into several sections along the meridian direction. The displacement functions along circumferential and axial direction are, respectively, composed by Fourier series and Jacobi polynomial regardless of boundary restraints. The boundary restraints of FG spherical shell can be easily simulated according to penalty method of spring stiffness technique, and the vibration solutions are obtained by Rayleigh–Ritz method. To verify the reliability and accuracy of the present solutions, the convergence and numerical verification have been conducted about different boundary parameters, Jacobi parameter, etc. The results obtained by the present method closely agree with those obtained from the published literatures, experiments, and finite element method (FEM). The impacts of geometric dimensions and boundary conditions on the vibration characteristics of FG spherical shell structure are also presented.


Sign in / Sign up

Export Citation Format

Share Document