Performance Analysis of Time Equivalent Space Vector Pulse Width Modulation Scheme for Three-Phase VSI at Inductive Load

2021 ◽  
pp. 651-657
Author(s):  
Shailesh Kumar Gupta ◽  
Mohd. Arif Khan ◽  
D. K. Chauhan
2014 ◽  
Vol 8 (23) ◽  
pp. 2356-2362 ◽  
Author(s):  
P. Muthukumar ◽  
P. Melba Mary ◽  
V. Deepaprincy ◽  
F. Monica

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Intissar Moussa ◽  
Adel Khedher

An appropriate modulation scheme selection ensures inverter performance. Thus, space vector modulation (SVM) is more efficient and has its own distinct advantages compared to other pulse width modulation (PWM) techniques. This work deals with the development of an advanced space vector pulse width modulation (SVM) technique for two-phase inverter control using an XSG library to ensure rapid prototyping of the controller FPGA implementation. The proposed architecture is applied digitally and in real time to drive a two-phase induction motor (TPIM) for small-scale wind turbine emulation (WTE) profiles in laboratories with minimum current ripple and torque oscillation. Four space voltage vectors generated for the used SVM technique do not contain a zero vector. Hence, for an adequate adjustment of these four vectors, a reference voltage vector located in the square locus is determined. Considering the asymmetry between the main and auxiliary windings, the TPIM behavior, which is fed through the advanced SVM controlled-two-phase inverter (2ϕ-inverter), is studied, allowing us to control the speed and the torque under different conditions for wind turbine emulation. Several quantities, such as electromagnetic torque, rotor fluxes, stator currents and speed, are analyzed. To validate the obtained results using both Simulink and XSG interfaces, the static and dynamic characteristics of the WTE are satisfactorily reproduced. The collected speed and torque errors between the reference and actual waveforms show low rates, proving emulator controller effectiveness.


Author(s):  
Nguyen Duc Minh ◽  
Bui Van Huy ◽  
Ngo Thi Quan ◽  
Nguyen Quang Ninh ◽  
Trinh Trong Chuong

This paper presents the design and simulation of three phase grid-connected inverter for photovoltaic systems with power ratings up to 5 kW. In this research, the application of Space Vector Pulse Width Modulation (SVPWM) technique for inverter is explored. With the use of SVPWM inverter, synchronization between the inverter and electrical grid follows the Phaselocked Loop (PLL) algorithm. The proposed design is simulated and validated by experimental results.


Sign in / Sign up

Export Citation Format

Share Document