Theoretical Transmission and Distribution Price Estimation by Voltage Level and Users

Author(s):  
Puyu He ◽  
Qian Wang ◽  
Lin Hu ◽  
Qian Li ◽  
Fei Zhou ◽  
...  
2017 ◽  
Vol 68 (6) ◽  
pp. 492-495 ◽  
Author(s):  
L’uboš Pavlov ◽  
L’uboš Skurčák ◽  
Juraj Chovanec ◽  
Juraj Altus

Abstract This article is devoted to the analysis of the possible influence of impedance asymmetry on the efficiency of electricity transmission and distribution in the electricity system in Slovakia, at a voltage level of 110 kV - 400 kV, using synchronic phasor monitoring results. For simplicity of calculations, in practice, the impedance imbalance from mutual interfacial inductive capacitances bonds is neglected. In this way, the 3-phase network is interpreted as symmetrical in the calculations. In this case, it is possible to determine only some components of losses (ohmic losses, corona loss, leakages, etc). The influence of impedance asymmetry can be quantified by calculation using the results of the monitoring of the synchronous phasors of selected electricity system elements (OHL, transformer, choke) or by 3-phase modelling of real system elements. frequency to test the transformer for induced over voltage test, and its characteristics is analysed.


Author(s):  
G.R. Kumrey ◽  
S. K. Mahobia

The field of electrical transformer are most important equipment which is use to convert ac voltage or current like lower to higher , higher to lower without change in the frequency . its primary side and secondary side are isolate from each other and it can higher or lower voltage level the apparent value of electrical passive element like inductive , resistive . It use to transfer electrical energy for long distance with higher voltage level .the electrical power transmission,distribution through transformer for factories and home . AC supply can easily generated by a convenient voltage and transformed into much higher voltage for transmission and distribution purpose.


2015 ◽  
Vol 749 ◽  
pp. 159-163 ◽  
Author(s):  
D. Edison Selvaraj ◽  
R. Vijayaraj ◽  
U. Satheeshwaran ◽  
J. Nancy ◽  
C. Pugazhendhi Sugumaran ◽  
...  

Cables are an integral part of the power transmission and distribution network. As the voltage level increases, amount of insulation used in the cable increases. Therefore a need arises for a material with better insulation characteristics to be used in cables. The dielectric strength of cable insulation depends on many factors such as the existence of filler material in the insulation. In this work, laboratory studies on a new filler material for cable insulation have been conducted. The influence of Silicon dioxide (SiO2) filler on the dielectric and mechanical properties of polyvinyl chloride (PVC) cable were analyzed. Comparison is made between the result of measurement and the actual value of the pure specimen. From the results, it is shown that the filler material has improved the dielectric and mechanical properties of the cable insulation.


2020 ◽  
pp. 85-88 ◽  
Author(s):  
Nadezhda P. Kondratieva

The article describes the results of the study concerning the effect of the voltage level on current harmonic composition in greenhouses irradiators. It is found that its change affects the level of current harmonics of all types of the studied greenhouse irradiators. With decrease of nominal supply voltage by 10 %, the total harmonic distortion THDi decreases by 9 % for emitters equipped with high pressure sodium lamps (HPSL), by 10 % for emitters with electrode-less lamps and by 3 % for LED based emitters. With increase of nominal supply voltage by 10 %, THDi increases by 23 % for lighting devices equipped with HPSL, by 10 % for irradiators with electrode-less lamps and by 3 % for LED based emitters. Therefore, changes of supply voltage cause the least effect on the level of current harmonics of LED based emitters and then the emitters with electrode-less lamps. Change of the level of supply voltage causes the greatest effect on the level of current harmonics of HPSL based irradiators. Mathematical models of dependence of THDi on the level of supply voltage for greenhouse emitters equipped with LED, electrode-less lamps and HPSL lamps were formulated. These mathematical models may be used for calculations of total current when selecting transformers and supply cable lines for greenhouse lighting devices, for design of new or reconstruction of existing irradiation systems of greenhouse facilities, and for calculation of power losses in power supply networks of greenhouse facilities during feasibility studies for energy saving and energy efficiency increasing projects.


Author(s):  
Iyappan Murugesan ◽  
Karpagam Sathish

: This paper presents electrical power system comprises many complex and interrelating elements that are susceptible to the disturbance or electrical fault. The faults in electrical power system transmission line (TL) are detected and classified. But, the existing techniques like artificial neural network (ANN) failed to improve the Fault Detection (FD) performance during transmission and distribution. In order to reduce the power loss rate (PLR), Daubechies Wavelet Transform based Gradient Ascent Deep Neural Learning (DWT-GADNL) Technique is introduced for FDin electrical power sub-station. DWT-GADNL Technique comprises three step, normalization, feature extraction and FD through optimization. Initially sample power TL signal is taken. After that in first step, min-max normalization process is carried out to estimate the various rated values of transmission lines. Then in second step, Daubechies Wavelet Transform (DWT) is employed for decomposition of normalized TLsignal to different components for feature extraction with higher accuracy. Finally in third step, Gradient Ascent Deep Neural Learning is an optimization process for detecting the local maximum (i.e., fault) from the extracted values with help of error function and weight value. When maximum error with low weight value is identified, the fault is detected with lesser time consumption. DWT-GADNL Technique is measured with PLR, feature extraction accuracy (FEA), and fault detection time (FDT). The simulation result shows that DWT-GADNL Technique is able to improve the performance of FEA and reduces FDT and PLR during the transmission and distribution when compared to state-of-the-art works.


Sign in / Sign up

Export Citation Format

Share Document