Finite Element Analysis of Punching Shear in RC Column to Footing Connection Considering the Material Parameters

Author(s):  
Tsenat Befkadu ◽  
Pandurang B. Khawal ◽  
Shashi Shekhar Singh
2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


2021 ◽  
Vol 2 (2) ◽  
pp. 93-97
Author(s):  
Satriawan Dini Hariyanto ◽  
Wikan Kurniawan

Stress analysis of the bender components in the design of the begel fabricator machine was carried out using FEA (Finite Element Analysis) with three variations of the constituent material parameters, namely 6061 aluminum, mild steel, and cast iron with a modulus of elasticity of 68.9 GPa, 220 GPa, 120.5 GPa, respectively. The test is carried out by a loading parameter 2520 MPa and fixed constraint. The maximum von misses stress and displacement obtained for each material parameter components using aluminum, mild steel, and cast iron are 17.78 MPa; 0.00765, 17.49 MPa; 0.00229, 17.62 MPa; 0.00427 respectively.


2013 ◽  
Vol 554-557 ◽  
pp. 2414-2423 ◽  
Author(s):  
Rachid Djeridi ◽  
Mohand Ould Ouali

Modeling anisotropic behavior of fiber reinforced rubberlike materials is actually of a great interest in many industrials sectors. Indeed, accurately description of the mechanical response and damage of such materials allows the increase of the lifecycle of these materials which generally evolve under several environment conditions. In this paper theoretical study and finite element analysis of anisotropic biomaterials is presented. The mechanical model adopted to achieve this study has been implemented into the finite element code Abaqus using an implicit scheme. This constitutive law has been utilized to perform some numerical simulations. The material parameters of the model have been determined by numerical calibration. One fiber family is considered in this work. Effects of the fiber orientation on the mechanical response and stiffness change of biomaterial is studied. Both the compressible and incompressible states have been taken into account. The results show firstly the capability of the model to reproduce the known results and that optimal fiber orientation can be found.


2013 ◽  
Vol 650 ◽  
pp. 572-576 ◽  
Author(s):  
Pan Zeng ◽  
Le Mei ◽  
Li Ping Lei

Thermal-Elastic-Plastic finite element analysis is introduced to study the deformation of laser welding of thin plate with consideration of varying material parameters. From aspects of numerical simulation and experiment, three welding cases are investigated: (1) the butt welding with constraint clamp, (2) the free bead welding, (3) the bead welding with constraint clamp. At last, the deformation configurations of welding plate under different constraint cases are characterized, and the behaviors of welding deformation are summarized.


2011 ◽  
Vol 255-260 ◽  
pp. 230-235
Author(s):  
Qin Chen ◽  
Hui Wu

An analog computation of carbon fiber-reinforced polymer (CFRP)-confined rectangular concrete column under cyclic lateral load is carried out using the finite element method (FEM) and is compared with the experimental results. The comparison indicates that the FEM could accurately predict the behavior of CFRP-confined reinforced concrete (RC) column under cyclic lateral loading. The reinforcement mechanism of carbon fiber sheets on RC columns is studied by analyzing the results calculated with FEM such as the stress-strain of carbon fiber sheets, stirrups, and concrete. The effect of axial compression ratio and the number of layers of fiber sheet on the ultimate bearing capacity and displacement ductility of RC column are studied by the finite element analysis. Part of the conclusion, namely, the effect of the number of layers and setting height of fiber sheet on the RC column, offers the reference and basis for further engineering application. template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


Sign in / Sign up

Export Citation Format

Share Document