Hardware Trojan Detection Using Deep Learning-Generative Adversarial Network and Stacked Auto Encoder Neural Networks

Author(s):  
Fredin Jose ◽  
M. Priyatharishini ◽  
M. Nirmala Devi
2019 ◽  
Vol 8 (6) ◽  
pp. 258 ◽  
Author(s):  
Yu Feng ◽  
Frank Thiemann ◽  
Monika Sester

Cartographic generalization is a problem, which poses interesting challenges to automation. Whereas plenty of algorithms have been developed for the different sub-problems of generalization (e.g., simplification, displacement, aggregation), there are still cases, which are not generalized adequately or in a satisfactory way. The main problem is the interplay between different operators. In those cases the human operator is the benchmark, who is able to design an aesthetic and correct representation of the physical reality. Deep learning methods have shown tremendous success for interpretation problems for which algorithmic methods have deficits. A prominent example is the classification and interpretation of images, where deep learning approaches outperform traditional computer vision methods. In both domains-computer vision and cartography-humans are able to produce good solutions. A prerequisite for the application of deep learning is the availability of many representative training examples for the situation to be learned. As this is given in cartography (there are many existing map series), the idea in this paper is to employ deep convolutional neural networks (DCNNs) for cartographic generalizations tasks, especially for the task of building generalization. Three network architectures, namely U-net, residual U-net and generative adversarial network (GAN), are evaluated both quantitatively and qualitatively in this paper. They are compared based on their performance on this task at target map scales 1:10,000, 1:15,000 and 1:25,000, respectively. The results indicate that deep learning models can successfully learn cartographic generalization operations in one single model in an implicit way. The residual U-net outperforms the others and achieved the best generalization performance.


Deep learning is a subset of the field of machine learning, which is a subfield of AI. The facts that differentiate deep learning networks in general from “canonical” feedforward multilayer networks are More neurons than previous networks, More complex ways of connecting layers, “Cambrian explosion” of computing power to train and Automatic feature extraction. Deep learning is defined as neural networks with a large number of parameters and layers in fundamental network architectures. Some of the network architectures are Convolutional Neural Networks, Recurrent Neural Networks Recursive Neural Networks, RCNN (Region Based CNN), Fast RCNN, Google Net, YOLO (You Only Look Once), Single Shot detectors, SegNet and GAN (Generative Adversarial Network). Different architectures work well with different types of Datasets. Object Detection is an important computer vision problem with a variety of applications. The tasks involved are classification, Object Localisation and instance segmentation. This paper will discuss how the different architectures are useful to detect the object.


2019 ◽  
Vol 7 (3) ◽  
pp. SF15-SF26
Author(s):  
Francesco Picetti ◽  
Vincenzo Lipari ◽  
Paolo Bestagini ◽  
Stefano Tubaro

The advent of new deep-learning and machine-learning paradigms enables the development of new solutions to tackle the challenges posed by new geophysical imaging applications. For this reason, convolutional neural networks (CNNs) have been deeply investigated as novel tools for seismic image processing. In particular, we have studied a specific CNN architecture, the generative adversarial network (GAN), through which we process seismic migrated images to obtain different kinds of output depending on the application target defined during training. We have developed two proof-of-concept applications. In the first application, a GAN is trained to turn a low-quality migrated image into a high-quality one, as if the acquisition geometry was much more dense than in the input. In the second example, the GAN is trained to turn a migrated image into the respective deconvolved reflectivity image. The effectiveness of the investigated approach is validated by means of tests performed on synthetic examples.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-30
Author(s):  
R. Nandhini Abirami ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Usman Tariq ◽  
Chuan-Yu Chang

Computational visual perception, also known as computer vision, is a field of artificial intelligence that enables computers to process digital images and videos in a similar way as biological vision does. It involves methods to be developed to replicate the capabilities of biological vision. The computer vision’s goal is to surpass the capabilities of biological vision in extracting useful information from visual data. The massive data generated today is one of the driving factors for the tremendous growth of computer vision. This survey incorporates an overview of existing applications of deep learning in computational visual perception. The survey explores various deep learning techniques adapted to solve computer vision problems using deep convolutional neural networks and deep generative adversarial networks. The pitfalls of deep learning and their solutions are briefly discussed. The solutions discussed were dropout and augmentation. The results show that there is a significant improvement in the accuracy using dropout and data augmentation. Deep convolutional neural networks’ applications, namely, image classification, localization and detection, document analysis, and speech recognition, are discussed in detail. In-depth analysis of deep generative adversarial network applications, namely, image-to-image translation, image denoising, face aging, and facial attribute editing, is done. The deep generative adversarial network is unsupervised learning, but adding a certain number of labels in practical applications can improve its generating ability. However, it is challenging to acquire many data labels, but a small number of data labels can be acquired. Therefore, combining semisupervised learning and generative adversarial networks is one of the future directions. This article surveys the recent developments in this direction and provides a critical review of the related significant aspects, investigates the current opportunities and future challenges in all the emerging domains, and discusses the current opportunities in many emerging fields such as handwriting recognition, semantic mapping, webcam-based eye trackers, lumen center detection, query-by-string word, intermittently closed and open lakes and lagoons, and landslides.


Sign in / Sign up

Export Citation Format

Share Document