A Study with Magnetic Field on Stenosed Artery of Blood Flow

Author(s):  
Sarfraz Ahmed ◽  
Biju Kumar Dutta
Author(s):  
C. Umadevi ◽  
G. Harpriya ◽  
M. Dhange ◽  
G. Nageswari

The flow of blood mixed with copper nanoparticles in an overlapping stenosed artery is reported in the presence of a magnetic field. The presence of stenosis is known to impede blood flow and to be the cause of different cardiac diseases. The governing nonlinear equations are rendered dimensionless and attempted under the conditions of mild stenosis. The analytical solutions for velocity, resistance to the flow, wall shear stress, temperature, and streamlines are obtained and analyzed through graphs. The obtained outcomes show that the temperature variation in copper nanoparticles concentrated blood is more and flow resistance is less when compared to pure blood. The investigations reveal that copper nanoparticles are effective to reduce the hemodynamics of stenosis and could be helpful in biomedical applications.


2009 ◽  
Vol 230 (1) ◽  
pp. 243-259 ◽  
Author(s):  
Md.A. Ikbal ◽  
S. Chakravarty ◽  
Kelvin K.L. Wong ◽  
J. Mazumdar ◽  
P.K. Mandal

2014 ◽  
Vol 11 (4) ◽  
pp. 185-195 ◽  
Author(s):  
G. C. Shit ◽  
M. Roy ◽  
A. Sinha

This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.


The role of flow parameters of blood is very important in maintaining proper functioning of heart and in turn health body. Herschel–Bulkley fluid model is used for the proposed one-fluid blood flow model. The behavior of important blood flow characteristics wall shear stress, volumetric flow rate and axial velocity of the flow in tapered mild stenosed artery in the presence of externally applied transverse magnetic field is studied. A combination of analytical and numerical methods is used to solve the mathematical model of the system. We report the importance constant/variable viscosity of blood on unsteady flow in the proposed artery. Numerical results are reported for different values of the physical parameters of interest. It is observed with the help of graphs, that the flow characteristics wall shear stress, volumetric flow rate and axial velocity are affected in tapered stenosed artery and flow can be regulated with the help externally applied transverse magnetic field.


Sign in / Sign up

Export Citation Format

Share Document