Tree Improvement of Sandalwood in India with Special Emphasis on Heartwood and Oil—An Analysis

Author(s):  
A. N. Arunkumar ◽  
A. Seetharam
Keyword(s):  
1983 ◽  
Author(s):  
Hans Nienstaedt ◽  
Hyun Kang

2007 ◽  
Vol 37 (10) ◽  
pp. 1886-1893 ◽  
Author(s):  
Xiaobo Li ◽  
Dudley A. Huber ◽  
Gregory L. Powell ◽  
Timothy L. White ◽  
Gary F. Peter

The importance of integrating measures of juvenile corewood mechanical properties, modulus of elasticity in particular, with growth and disease resistance in tree improvement programs has increased. We investigated the utility of in-tree velocity stiffness measurements to estimate the genetic control of corewood stiffness and to select for trees with superior growth and stiffness in a progeny trial of 139 families of slash pine, Pinus elliottii Engelm. grown on six sites. Narrow-sense heritability estimates across all six sites for in-tree acoustic velocity stiffness at 8 years (0.42) were higher than observed for height (0.36) and diameter at breast height (DBH) (0.28) at 5 years. The overall type B genetic correlation across sites for velocity stiffness was 0.68, comparable to those found for DBH and volume growth, indicating that family rankings were moderately repeatable across all sites for these traits. No significant genetic correlations were observed between velocity stiffness, DBH, and volume growth. In contrast, a significant, but small, favorable genetic correlation was found between height and velocity stiffness. Twenty percent of the families had positive breeding values for both velocity stiffness and growth. The low cost, high heritability and nearly independent segregation of the genes involved with in-tree velocity stiffness and growth traits indicate that acoustic methods can be integrated into tree improvement programs to breed for improved corewood stiffness along with growth in slash pine.


1994 ◽  
Vol 70 (5) ◽  
pp. 593-598 ◽  
Author(s):  
G. W. Adams ◽  
M. G. Doiron ◽  
Y. S. Park ◽  
J. M. Bonga ◽  
P. J. Charest

The somatic embryogenesis process was evaluated as a potential tool for operational vegetative propagation using individuals from families currently used in the J.D. Irving, Ltd. black spruce tree improvement program. Most families were responsive although the number of individuals within families capable of producing embryogenic tissue (ET) varied greatly (1–70%). Seventy-four percent of the ET clones produced mature embryos and most of these germinated. Greenhouse survival was initially low (11%) but improved in subsequent experiments to 45% as growing regimes were refined. Demonstration plantings of the resulting somatic plants were established at two sites in New Brunswick. A total of 206 clones were cryopreserved. The potential for integrating somatic embryogenesis techniques into tree improvement and stock production programs is discussed. Key words: tree improvement, somatic embryogenesis, clonal propagation, black spruce, biotechnology


BioResources ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Steve McKeand

Nowhere in the world have tree improvement and silviculture had a bigger impact on forest productivity and value to landowners than in the southern US. The economic impact from almost 60 years of tree improvement in the southern United States has been staggering. For example, over 300,000 hectares are planted each year with seedlings from the breeding efforts with loblolly pine (Pinus taeda) by members and staff of the North Carolina State University Cooperative Tree Improvement Program. The present value of continued genetic gains from traditional tree improvement efforts is estimated to be $2.5 billion USD to landowners and citizens in the southern US.


1976 ◽  
Vol 52 (6) ◽  
pp. 283-289 ◽  
Author(s):  
C. W. Yeatman

A program of provenance testing, seed production and genetic improvement of jack pine was developed in the Baskatong region of western Quebec through sustained collaboration among government forest services and forest industry. Research plantations demonstrated, within a period of 10 years from establishment, the superiority in growth, cold hardiness and disease resistance of regionally adapted local seed sources. Critical differences were evident between provenances from the Boreal Forest Region and those from the adjacent Sections of the Great Lakes — St. Lawrence Forest Region.A 300-acre (120 ha) seed production area was created within a genetically superior jack pine population of natural origin in the Côte Jaune area west of Lake Baskatong. Within this population, 325 plus trees were selected, marked and recorded over two years by student crews employed in the summer. Seed harvested from the felled plus trees will be used to create a seedling seed orchard and to establish progeny tests. The plus trees are to be grafted for controlled breeding among selected progeny-tested clones at a later date. This cooperative program of tree improvement will ensure the future supply of high quality seed that will maintain and enhance the value of the forest resource.


Sign in / Sign up

Export Citation Format

Share Document