A Two-Echelon Pharmaceutical Supply Chain Optimization via Genetic Algorithm

Author(s):  
Elif Yıldırım ◽  
Berrin Denizhan
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yue Zhao ◽  
Yang Shen ◽  
Jiaqi Yan

Reasonable communication and cooperation between enterprises are helpful for the efficient operation of a supply chain. To explore the maximum utility of an entire supply chain, we propose a supplier-manufacturer-seller supply-chain game decision-making model. We use the model as the fitness function of a genetic algorithm that calculates the optimal solution and optimizes the total utility parameters. We analyze the theoretical and practical properties of the supply-chain optimization process and implement it in MATLAB, which provides quantitative support and useful references for making business decisions and optimally managing a supply chain.


2011 ◽  
Vol 411 ◽  
pp. 378-382
Author(s):  
Yong Gao ◽  
Ming Yu Li ◽  
Jian Ping Wang

In order to resolve material ordering and inventory control problem in supply chain, optimization method based on GA is put forward. Supply chain model in the paper is made up of one supplier, one manufacturer, N-retailers and end customers. Moreover, supply chain model is developed in terms of two policies: traditionally centralized controlling policy and the coordinating controlling policy. Lastly, optimizing ordering and inventory control problem for supply chain is solved by genetic algorithm (GA), and an instance is illustrated to show the validity of the method.


2005 ◽  
Vol 29 (6) ◽  
pp. 1305-1316 ◽  
Author(s):  
E.P. Schulz ◽  
M.S. Diaz ◽  
J.A. Bandoni

2015 ◽  
Vol 183 ◽  
pp. 291-307 ◽  
Author(s):  
Niklas von der Assen ◽  
André Sternberg ◽  
Arne Kätelhön ◽  
André Bardow

Potential environmental benefits have been identified for the utilization of carbon dioxide (CO2) as a feedstock for polyurethanes (PUR). CO2 can be utilized in the PUR supply chain in a wide variety of ways ranging from direct CO2 utilization for polyols as a PUR precursor, to indirect CO2 utilization for basic chemicals in the PUR supply chain. In this paper, we present a systematic exploration and environmental evaluation of all direct and indirect CO2 utilization options for flexible and rigid PUR foams. The analysis is based on an LCA-based PUR supply chain optimization model using linear programming to identify PUR production with minimal environmental impacts. The direct utilization of CO2 for polyols allows for large specific impact reductions of up to 4 kg CO2-eq. and 2 kg oil-eq. per kg CO2 utilized, but the amounts of CO2 that can be utilized are limited to 0.30 kg CO2 per kg PUR. The amount of CO2 utilized can be increased to up to 1.7 kg CO2 per kg PUR by indirect CO2 utilization in the PUR supply chain. Indirect CO2 utilization requires hydrogen (H2). The environmental impacts of H2 production strongly affect the impact of indirect CO2 utilization in PUR. To achieve optimal environmental performance under the current fossil-based H2 generation, PUR production can only utilize much less CO2 than theoretically possible. Thus, utilizing as much CO2 in the PUR supply chain as possible is not always environmentally optimal. Clean H2 production is required to exploit the full CO2 utilization potential for environmental impact reduction in PUR production.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ágota Bányai ◽  
Tamás Bányai ◽  
Béla Illés

The globalization of economy and market led to increased networking in the field of manufacturing and services. These manufacturing and service processes including supply chain became more and more complex. The supply chain includes in many cases consignment stores. The design and operation of these complex supply chain processes can be described as NP-hard optimization problems. These problems can be solved using sophisticated models and methods based on metaheuristic algorithms. This research proposes an integrated supply model based on consignment stores. After a careful literature review, this paper introduces a mathematical model to formulate the problem of consignment-store-based supply chain optimization. The integrated model includes facility location and assignment problems to be solved. Next, an enhanced black hole algorithm dealing with multiobjective supply chain model is presented. The sensitivity analysis of the heuristic black hole optimization method is also described to check the efficiency of new operators to increase the convergence of the algorithm. Numerical results with different datasets demonstrate how the proposed model supports the efficiency, flexibility, and reliability of the consignment-store-based supply chain.


2021 ◽  
Author(s):  
Ovidiu Cosma ◽  
Petrică C Pop ◽  
Cosmin Sabo

Abstract In this paper we investigate a particular two-stage supply chain network design problem with fixed costs. In order to solve this complex optimization problem, we propose an efficient hybrid algorithm, which was obtained by incorporating a linear programming optimization problem within the framework of a genetic algorithm. In addition, we integrated within our proposed algorithm a powerful local search procedure able to perform a fine tuning of the global search. We evaluate our proposed solution approach on a set of large size instances. The achieved computational results prove the efficiency of our hybrid genetic algorithm in providing high-quality solutions within reasonable running-times and its superiority against other existing methods from the literature.


Sign in / Sign up

Export Citation Format

Share Document