Research on Fault Detection and Diagnosis Method of Diesel Engine Air System Based on Deep Learning

2021 ◽  
pp. 328-341
Author(s):  
Yanyan Wang ◽  
Ning Ren ◽  
Jin Li ◽  
Bin Liu ◽  
Qingtao Si ◽  
...  
2012 ◽  
Vol 197 ◽  
pp. 346-350 ◽  
Author(s):  
Ping Xie ◽  
Yu Xin Yang ◽  
Guo Qian Jiang ◽  
Yi Hao Du ◽  
Xiao Li Li

The rolling bearings are one of the most critical components in rotary machinery. To prevent unexpected bearing failure, it is crucial to develop the effective fault detection and diagnosis techniques to realize equipment’s near-zero downtime and maximum productivity. In this paper, a new fault detection and diagnosis method based on Wigner-Ville spectrum entropy (WVSE) is proposed. First, the local mean decomposition (LMD) and the Wigner-Ville distribution (WVD) are combined to develop a new feature extraction approach to extract the fault features in time-frequency domain of the bearing vibration signals. Second, the concept of the Shannon entropy is integrated into the WVD to define the Wigner-Ville spectrum entropy to quantify the energy variation in time-frequency distribution under different work conditions. The research results from the bearing vibration signals demonstrate that the proposed method based on WVSE can identify different fault patterns more accurately and effectively comparing with other methods based on singular spectrum entropy (SSE) or power spectrum entropy (PSE).


2013 ◽  
Vol 427-429 ◽  
pp. 1022-1027 ◽  
Author(s):  
Xue Mei Mo ◽  
Yu Fang ◽  
Yun Guo Yang

This paper proposes a method of the fault detection and diagnosis for the railway turnout based on the current curve of switch machine. Exact curve matching fault detection method and SVM-based fault diagnosis method are adopted in the paper. Based on envelope and morpheme match algorithm, exact curve matching method is used to match the detected current curve with the reference curve so as to predict whether the curve would have fault or not. Moreover, the SVM-based fault diagnosis method is used to make sure that the fault conditions could be diagnosed intelligently. Finally, the experimental results show that the proposed method can accurately identify the turnout fault status in the conversion process, and the accuracy rate in the diagnosis of the fault location is above 98%, which verify the effectiveness of the method in the fault detection and diagnosis.


Author(s):  
Nikhita Mishra ◽  
◽  
Ipshitta Chaturvedi ◽  
Janhvi Mehta ◽  
◽  
...  

Semiconductor manufacturing is consid-ered to be one of the most technologically complicated manufacturing processes. Bearing, being a critical part of the rotating machinery used in the process, plays an essential role as it supports the mechanical rotating body and decreases the friction coefficient. However, extensive use makes this element a target of health degradation, which indirectly causes machine failure. A defective bearing causes approximately 50% of failures in electrical machines. Hence, there arises a dire need for effective fault detection and diagnosis methods to recog-nise fault patterns and help take preventive measures. This paper carries out a comprehensive comparative study of the pre-existing machine learning and deep learning techniques used for diagnosing bearing faults and further devises a novel framework for bearing fault diagnosis based on the results. Unlike the conventional Fault Detection Classifiers (FDC) that operate in the original data space, this algorithm explores the scope for feature extraction and transferability empowered by the deep learning models used.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Jingjing Liu ◽  
Min Zhang ◽  
Hai Wang ◽  
Wei Zhao ◽  
Yan Liu

This paper presents a fault detection and diagnosis (FDD) method, which uses one-dimensional convolutional neural network (1-D CNN) and WaveCluster clustering analysis to detect and diagnose sensor faults in the supply air temperature (Tsup) control loop of the air handling unit. In this approach, 1-D CNN is employed to extract man-guided features from raw data, and the extracted features are analyzed by WaveCluster clustering. The suspicious sensor faults are indicated and categorized by denoting clusters. Moreover, the Tc acquittal procedure is introduced to further improve the accuracy of FDD. In validation, false alarm ratio and missing diagnosis ratio are mainly used to demonstrate the efficiency of the proposed FDD method. Results show that the abrupt sensor faults in Tsup control loop can be efficiently detected and diagnosed, and the proposed method is equipped with good robustness within the noise range of 6 dBm∼13 dBm.


2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Yixin Huangfu ◽  
Essam Seddik ◽  
Saeid Habibi ◽  
Alan Wassyng ◽  
Jimi Tjong

Sign in / Sign up

Export Citation Format

Share Document