Installation Effects on Axial Performance of Monopiles in Chalk for Offshore Renewables

Author(s):  
Matteo O. Ciantia
Keyword(s):  
Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


Author(s):  
Tomas Sinnige ◽  
Daniele Ragni ◽  
Georg Eitelberg ◽  
Leo L. Veldhuis
Keyword(s):  

Author(s):  
Martin Marx ◽  
Michael Kotulla ◽  
André Kando ◽  
Stephan Staudacher

To ensure the quality standards in engine testing, a growing research effort is put into the modeling of full engine test cell systems. A detailed understanding of the performance of the combined system, engine and test cell, is necessary e.g. to assess test cell modifications or to identify the influence of test cell installation effects on engine performance. This study aims to give solutions on how such a combined engine and test cell system can be effectively modeled and validated in the light of maximized test cell observability with minimum instrumentation and computational requirements. An aero-thermodynamic performance model and a CFD model are created for the Fan-Engine Pass-Off Test Facility at MTU Maintenance Berlin-Brandenburg GmbH, representing a W-shape configuration, indoor Fan-Engine test cell. Both models are adjusted and validated against each other and against test cell instrumentation. A fast-computing performance model is delivering global parameters, whereas a highly-detailed aerodynamic simulation is established for modeling component characteristics. A multi-disciplinary synthesis of both approaches can be used to optimize each of the specific models by calibration, optimized boundary conditions etc. This will result in optimized models, which, in combination, can be used to assess the respective design and operational requirements.


Author(s):  
Philip Mc Laughlin ◽  
Rod Self ◽  
Christopher Powles ◽  
Christopher Wrighton ◽  
Paul Strange ◽  
...  

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Mikael Stenfelt ◽  
Konstantinos Kyprianidis

In gas turbines used for airplane propulsion, the number of sensors are kept at a minimum for accurate control and safe operation. Additionally, when data are communicated between the airplane main computer and the various subsystems, different systems may have different constraints and requirements regarding what data transmit. Early in the design process, these parameters are relatively easy to change, compared to a mature product. If the gas turbine diagnostic system is not considered early in the design process, it may lead to diagnostic functions having to operate with reduced amount of data. In this paper, a scenario where the diagnostic function cannot obtain airplane installation effects is considered. The installation effects in question is air intake pressure loss (pressure recovery), bleed flow and shaft power extraction. A framework is presented where the unknown installation effects are estimated based on available data through surrogate models, which is incorporated into the diagnostic framework. The method has been evaluated for a low-bypass turbofan with two different sensor suites. It has also been evaluated for two different diagnostic schemes, both determined and underdetermined. Results show that, compared to assuming a best-guess constant-bleed and shaft power, the proposed method reduce the RMS in health parameter estimation from 26% up to 80% for the selected health parameters. At the same time, the proposed method show the same degradation pattern as if the installation effects were known.


Sign in / Sign up

Export Citation Format

Share Document