Linear Regression Model: Goodness of Fit and Testing of Hypothesis

Author(s):  
Panchanan Das
2009 ◽  
Vol 6 (1) ◽  
pp. 115-141 ◽  
Author(s):  
P. C. Stolk ◽  
C. M. J. Jacobs ◽  
E. J. Moors ◽  
A. Hensen ◽  
G. L. Velthof ◽  
...  

Abstract. Chambers are widely used to measure surface fluxes of nitrous oxide (N2O). Usually linear regression is used to calculate the fluxes from the chamber data. Non-linearity in the chamber data can result in an underestimation of the flux. Non-linear regression models are available for these data, but are not commonly used. In this study we compared the fit of linear and non-linear regression models to determine significant non-linearity in the chamber data. We assessed the influence of this significant non-linearity on the annual fluxes. For a two year dataset from an automatic chamber we calculated the fluxes with linear and non-linear regression methods. Based on the fit of the methods 32% of the data was defined significant non-linear. Significant non-linearity was not recognized by the goodness of fit of the linear regression alone. Using non-linear regression for these data and linear regression for the rest, increases the annual flux with 21% to 53% compared to the flux determined from linear regression alone. We suggest that differences this large are due to leakage through the soil. Macropores or a coarse textured soil can add to fast leakage from the chamber. Yet, also for chambers without leakage non-linearity in the chamber data is unavoidable, due to feedback from the increasing concentration in the chamber. To prevent a possibly small, but systematic underestimation of the flux, we recommend comparing the fit of a linear regression model with a non-linear regression model. The non-linear regression model should be used if the fit is significantly better. Open questions are how macropores affect chamber measurements and how optimization of chamber design can prevent this.


Author(s):  
Aliva Bera ◽  
D.P. Satapathy

In this paper, the linear regression model using ANN and the linear regression model using MS Excel were developed to estimate the physico-chemical concentrations in groundwater using pH, EC, TDS, TH, HCO3 as input parameters and Ca, Mg and K as output parameters. A comparison was made which indicated that ANN model had the better ability to estimate the physic-chemical concentrations in groundwater. An analytical survey along with simulation based tests for finding the climatic change and its effect on agriculture and water bodies in Angul-Talcher area is done. The various seasonal parameters such as pH, BOD, COD, TDS,TSS along with heavy elements like Pb, Cd, Zn, Cu, Fe, Mn concentration in water resources has been analyzed. For past 30 years rainfall data has been analyzed and water quality index values has been studied to find normal and abnormal quality of water resources and matlab based simulation has been done for performance analysis. All results has been analyzed and it is found that the condition is stable. 


Sign in / Sign up

Export Citation Format

Share Document