An Experimental Investigation on Productivity and Product Quality During Thin-Wall Machining of Aluminum Alloy 2024-T351

Author(s):  
G. Bolar ◽  
S. N. Joshi
2011 ◽  
Vol 337 ◽  
pp. 522-525 ◽  
Author(s):  
Huan Yu ◽  
Jia Hui Wang ◽  
Bo Wen Xiong ◽  
Qing Song Yan ◽  
Zhi Feng Xu ◽  
...  

The grade-controlled filling behavior of vacuum counter-pressure casting thin wall aluminum alloy was studied by numerical simulation and experimental investigation. According to the analysis of filling behavior under fixed pressure and the casting structure, the technology of the grade-controlled filling of vacuum counter-pressure casting thin wall aluminum alloy was suggested. The result shows that the filling velocity was controlled on grade, resulting in the smoothly and sequential filling behavior, and the decreasing of defects in castings.


2012 ◽  
Vol 83 (3) ◽  
pp. 230-237 ◽  
Author(s):  
Lihui Lang ◽  
Baosheng Liu ◽  
Tao Li ◽  
Xiangni Zhao ◽  
Yuansong Zeng

1986 ◽  
Vol 108 (4) ◽  
pp. 313-320 ◽  
Author(s):  
D. E. Helling ◽  
A. K. Miller ◽  
M. G. Stout

The multiaxial yield behaviors of 1100-0 aluminum, 70:30 brass, and an overaged 2024 aluminum alloy (2024-T7) have been investigated for a variety of prestress histories involving combinations of normal and shear stresses. Von Mises effective prestrains were in the range of 1.2–32%. Prestress paths were chosen in order to investigate the roles of prestress and prestrain direction on the nature of small-strain offset (ε = 5 × 10−6) yield loci. Particular attention was paid to the directionality, i.e., translation and distortion, of the yield locus. A key result, which was observed in all three materials, was that the final direction of the prestrain path strongly influences the distortions of the yield loci. Differences in the yield locus behavior of the three materials were also observed: brass and the 2024-T7 alloy showed more severe distortions of the yield locus and a longer memory of their entire prestrain history than the 1100-0 aluminum. In addition, more “kinematic” translation of the subsequent yield loci was observed in brass and 2024-T7 than in 1100-0 aluminum. The 2024-T7 differed from the other materials, showing a yield locus which decreased in size subsequent to plastic straining. Finally, the implications of these observations for the constitutive modeling of multiaxial material behavior are discussed.


2011 ◽  
Vol 697-698 ◽  
pp. 129-132 ◽  
Author(s):  
Bing Han ◽  
Cheng Zu Ren ◽  
X.Y. Yang ◽  
Guang Chen

The deflection of Aluminum alloy thin-wall workpiece caused by the milling force leads to additional machining errors and reduces machining accuracy. In this paper, a set of experiments of milling thin-wall workpiece were carried out to study the deflection of thin-wall workpiece. The workpieces, with different types of material and different thicknesses, were machined on CNC machining center. The deflections of workpiece were measured by a three-coordinate measuring machine. Effects of Aluminum alloy material and thickness on deflection are discussed based on the experimental data.


Sign in / Sign up

Export Citation Format

Share Document