Strengthening Elliptic Curve Cryptography—Key Generation via Biometric Fusion Approach

Author(s):  
Yogita S. Pagar ◽  
G. V. Chowdhary
Author(s):  
Sachin P. Godse ◽  
Parikshit N. Mahalle

<p class="abstract">A recent development in the adhoc network is a vehicular network called VANET (Vehicular Adhoc Network). Intelligent Transportation System is the Intelligent application of VANET. Due to open nature of VANET attacker can launch various kind of attack. As VANET messages are deal with very crucial information’s which may save the life of passengers by avoiding accidents, save the time of people on a trip, exchange of secret information etc., because of this security is must be in the VANET. To ensure the highest level of security the network should be free from attackers, there by all information pass among nodes in the network must be reliable i.e. should be originated by an authenticated node. Authentication is the first line of security in VANET; it avoids nonregistered vehicle in the network. Previous research come up with some Cryptographic, Trust based, Id based, Group signature based authentication schemes. A speed of authentication and privacy preservation is important parameters in VANET authentication. This paper addresses the computational analysis of authentication schemes based on ECC. We started analysis from comparing plain ECC with our proposed AECC (Adaptive Elliptic Curve Cryptography) and EECC (Enhanced Elliptic Curve Cryptography). The result of analysis shows proposed schemes improve speed and security of authentication. In AECC key size is adaptive i.e. different sizes of keys are generated during key generation phase. Three ranges are specified for key sizes small, large and medium. In EECC we added an extra parameter during transmission of information from the vehicle to RSU for key generation. Schemes of authentications are evaluated by comparative analysis of time required for authentication and key breaking possibilities of keys used in authentication.</p>


Author(s):  
Sreekala M ◽  
Varghese Paul

We are in the era of digital revolution and the benefits are remarkable. People are much dependent on digital technology and can’t survive without it. With the advancement of Internet and its applications, we share a wide range of data including texts, images, audios and videos in a more extensive space and time scope that we never had before. This increases the need for security day by day. Cryptography is an art of Science that uses complex logic in order to design powerful encryption techniques. Both symmetric and asymmetric key encryptions have their own advantages. Time Dependant Multiple Random Cipher(TDMRC) code is one of the best symmetric encryption schemes. Elliptic curve cryptography(ECC) is widely used because of its less key size and faster key generation. This paper proposes a new method of hybrid encryption method using ECC and TDMRC.


2014 ◽  
Vol 17 (A) ◽  
pp. 181-202 ◽  
Author(s):  
Daniel J. Bernstein ◽  
Tanja Lange

AbstractThis paper introduces ‘hyper-and-elliptic-curve cryptography’, in which a single high-security group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar multiplication (for example, Diffie–Hellman shared-secret computation) and at the same time supports fast elliptic-curve formulas for fixed-base-point scalar multiplication (for example, key generation) and multi-scalar multiplication (for example, signature verification).


2020 ◽  
Vol 55 (3) ◽  
Author(s):  
Mayes M. Hoobi

Cryptography is the operation of transferring a specific message to prevent an attacker from accessing the contents of a message. To increase the level of security in any communication, both parties must have a copy of the encryption key. The Data Encryption Standard algorithm is insufficient due to its weak key generation, so that the key must be reconfigured to make this algorithm more secure, effective, and stronger. The key for encryption enhances securities of the Data Encryption Standard algorithm. This research assumed a combination of two efficient encryption algorithms to achieve the goal of information security by adding a new level of security to the Data Encryption Standard algorithm using the elliptic curve cryptography algorithm. This aim was met by adding two new key functions; the first one is EncK(), and the second one is DecK() for an encryption and decryption key of the Data Encryption Standard algorithm to make this algorithm more secure against attackers. The results obtained from this research also demonstrate good resistance against a brute-force attack, which makes the system more effective by applying the elliptic curve cryptography algorithm to encrypt and decrypt keys using the Data Encryption Standard. In addition, these modifications enhance the degree of complexity, increase key search space, and make the ciphered message more difficult for an attacker to crack.


Author(s):  
Kazuki NAGANUMA ◽  
Takashi SUZUKI ◽  
Hiroyuki TSUJI ◽  
Tomoaki KIMURA

Author(s):  
Mohd Javed ◽  
Khaleel Ahmad ◽  
Ahmad Talha Siddiqui

WiMAX is the innovation and upgradation of 802.16 benchmarks given by IEEE. It has numerous remarkable qualities, for example, high information rate, the nature of the service, versatility, security and portability putting it heads and shoulder over the current advancements like broadband link, DSL and remote systems. Though like its competitors the concern for security remains mandatory. Since the remote medium is accessible to call, the assailants can undoubtedly get into the system, making the powerless against the client. Many modern confirmations and encryption methods have been installed into WiMAX; however, regardless it opens with up different dangers. In this paper, we proposed Elliptic curve Cryptography based on Cellular Automata (EC3A) for encryption and decryption the message for improving the WiMAX security


Sign in / Sign up

Export Citation Format

Share Document