Multi-Label Classification Using Problem Transformation Approach and Machine Learning on Text Mining for Multiple Event Detection

Author(s):  
Hadi Safari ◽  
Kusprasapta Mutijarsa
2013 ◽  
Vol 292 ◽  
pp. 135-151 ◽  
Author(s):  
Newton Spolaôr ◽  
Everton Alvares Cherman ◽  
Maria Carolina Monard ◽  
Huei Diana Lee

Author(s):  
Blake Feichtl ◽  
Caleb Thompson ◽  
Tyler Liboro ◽  
Saad Siddiqui ◽  
V. V. N. Sriram Malladi ◽  
...  

Text mining utilizes machine learning (ML) and natural language processing (NLP) for text implicit knowledge recognition, such knowledge serves many domains as translation, media searching, and business decision making. Opinion mining (OM) is one of the promised text mining fields, which are used for polarity discovering via text and has terminus benefits for business. ML techniques are divided into two approaches: supervised and unsupervised learning, since we herein testified an OM feature selection(FS)using four ML techniques. In this paper, we had implemented number of experiments via four machine learning techniques on the same three Arabic language corpora. This paper aims at increasing the accuracy of opinion highlighting on Arabic language, by using enhanced feature selection approaches. FS proposed model is adopted for enhancing opinion highlighting purpose. The experimental results show the outperformance of the proposed approaches in variant levels of supervisory,i.e. different techniques via distinct data domains. Multiple levels of comparison are carried out and discussed for further understanding of the impact of proposed model on several ML techniques.


Author(s):  
Bethany Percha

Electronic health records (EHRs) are becoming a vital source of data for healthcare quality improvement, research, and operations. However, much of the most valuable information contained in EHRs remains buried in unstructured text. The field of clinical text mining has advanced rapidly in recent years, transitioning from rule-based approaches to machine learning and, more recently, deep learning. With new methods come new challenges, however, especially for those new to the field. This review provides an overview of clinical text mining for those who are encountering it for the first time (e.g., physician researchers, operational analytics teams, machine learning scientists from other domains). While not a comprehensive survey, this review describes the state of the art, with a particular focus on new tasks and methods developed over the past few years. It also identifies key barriers between these remarkable technical advances and the practical realities of implementation in health systems and in industry. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Andreas Köhler ◽  
Steffen Mæland

<p>We combine the empirical matched field (EMF) method and machine learning using Convolutional Neural Networks (CNNs) for calving event detection at the IMS station SPITS and GSN station KBS on the Arctic Archipelago of Svalbard. EMF detection with seismic arrays seeks to identify all signals similar to a single template generated by seismic events in a confined target region. In contrast to master event cross-correlation detectors, the detection statistic is not the waveform similarity, but the array beam power obtained using empirical phase delays (steering parameters) between the array stations. Unlike common delay-and-sum beamforming, the steering parameters do not need to represent a plane wave and are directly computed from the template signal without assuming a particular apparent velocity and back-azimuth. As for all detectors, the false alarms rate depends strongly on the beam power threshold setting and therefore needs appropriate tuning or alternatively post-processing. Here, we combine the EMF detector using a low detection threshold with a post-detection classification step. The classifier uses spectrograms of single-station three-component records and state-of-the-art CNNs pre-trained for image recognition. Spectrograms of three-component seismic data are hereby combined as RGB images. We apply the methodology to detect calving events at tidewater glaciers in the Kongsfjord region in Northwestern Svalbard. The EMF detector uses data of the SPITS array, at about 100 km distance to the glaciers, while the CNN classifier processes data from the single three-component station KBS at 15 km distance using time windows where the event is expected according to the EMF detection. The EMF detector combines templates for the P and for the S wave onsets of a confirmed, large calving event. The CNN spectrogram classifier is trained using classes of confirmed calving signals from four different glaciers in the Kongsfjord region, seismic noise examples, and regional tectonic seismic events. By splitting the data into training and test data set, the CNN classifier yields a recognition rate of 89% on average. This is encouragingly high given the complex nature of calving signals and their visually similar waveforms. Subsequently, we process continuous data of 6 months in 2016 using the EMF-CNN method to produce a time series of glacier calving. About 90% of the confirmed calving signals used for the CNN training are detected by EMF processing, and around 80% are assigned to the correct glacier after CNN classification. Such calving time series allow us to estimate and monitor ice loss at tidewater glaciers which in turn can help to better understand the impact of climate change in Polar regions. Combining the superior detection capability of (less common) seismic arrays at a larger source distance with a powerful machine learning classifier at single three-component stations closer to the source, is a promising approach not only for environmental monitoring, but also for event detection and classification in a CTBTO verification context.</p>


Author(s):  
Qingchao Zeng ◽  
Jun Liu ◽  
Dongya Yang ◽  
Yichuan He ◽  
Xue Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document