Combing empirical matched field processing at IMS station SPITS and convolutional neural networks for calving event detection in Svalbard

Author(s):  
Andreas Köhler ◽  
Steffen Mæland

<p>We combine the empirical matched field (EMF) method and machine learning using Convolutional Neural Networks (CNNs) for calving event detection at the IMS station SPITS and GSN station KBS on the Arctic Archipelago of Svalbard. EMF detection with seismic arrays seeks to identify all signals similar to a single template generated by seismic events in a confined target region. In contrast to master event cross-correlation detectors, the detection statistic is not the waveform similarity, but the array beam power obtained using empirical phase delays (steering parameters) between the array stations. Unlike common delay-and-sum beamforming, the steering parameters do not need to represent a plane wave and are directly computed from the template signal without assuming a particular apparent velocity and back-azimuth. As for all detectors, the false alarms rate depends strongly on the beam power threshold setting and therefore needs appropriate tuning or alternatively post-processing. Here, we combine the EMF detector using a low detection threshold with a post-detection classification step. The classifier uses spectrograms of single-station three-component records and state-of-the-art CNNs pre-trained for image recognition. Spectrograms of three-component seismic data are hereby combined as RGB images. We apply the methodology to detect calving events at tidewater glaciers in the Kongsfjord region in Northwestern Svalbard. The EMF detector uses data of the SPITS array, at about 100 km distance to the glaciers, while the CNN classifier processes data from the single three-component station KBS at 15 km distance using time windows where the event is expected according to the EMF detection. The EMF detector combines templates for the P and for the S wave onsets of a confirmed, large calving event. The CNN spectrogram classifier is trained using classes of confirmed calving signals from four different glaciers in the Kongsfjord region, seismic noise examples, and regional tectonic seismic events. By splitting the data into training and test data set, the CNN classifier yields a recognition rate of 89% on average. This is encouragingly high given the complex nature of calving signals and their visually similar waveforms. Subsequently, we process continuous data of 6 months in 2016 using the EMF-CNN method to produce a time series of glacier calving. About 90% of the confirmed calving signals used for the CNN training are detected by EMF processing, and around 80% are assigned to the correct glacier after CNN classification. Such calving time series allow us to estimate and monitor ice loss at tidewater glaciers which in turn can help to better understand the impact of climate change in Polar regions. Combining the superior detection capability of (less common) seismic arrays at a larger source distance with a powerful machine learning classifier at single three-component stations closer to the source, is a promising approach not only for environmental monitoring, but also for event detection and classification in a CTBTO verification context.</p>

Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
Hanchen Wang ◽  
Tariq Alkhalifah

The ample size of time-lapse data often requires significant event detection and source location efforts, especially in areas like shale gas exploration regions where a large number of micro-seismic events are often recorded. In many cases, the real-time monitoring and locating of these events are essential to production decisions. Conventional methods face considerable drawbacks. For example, traveltime-based methods require traveltime picking of often noisy data, while migration and waveform inversion methods require expensive wavefield solutions and event detection. Both tasks require some human intervention, and this becomes a big problem when too many sources need to be located, which is common in micro-seismic monitoring. Machine learning has recently been used to identify micro-seismic events or locate their sources once they are identified and picked. We propose to use a novel artificial neural network framework to directly map seismic data, without any event picking or detection, to their potential source locations. We train two convolutional neural networks on labeled synthetic acoustic data containing simulated micro-seismic events to fulfill such requirements. One convolutional neural network, which has a global average pooling layer to reduce the computational cost while maintaining high-performance levels, aims to classify the number of events in the data. The other network predicts the source locations and other source features such as the source peak frequencies and amplitudes. To reduce the size of the input data to the network, we correlate the recorded traces with a central reference trace to allow the network to focus on the curvature of the input data near the zero-lag region. We train the networks to handle single, multi, and no event segments extracted from the data. Tests on a simple vertical varying model and a more realistic Otway field model demonstrate the approach's versatility and potential.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


Sign in / Sign up

Export Citation Format

Share Document