Evaluating the Self-sensing Property of Carbon Fiber Incorporated Geopolymer Composite for Structural Health Monitoring Applications

Author(s):  
B. Nivetha ◽  
D. Suji
2006 ◽  
Vol 321-323 ◽  
pp. 290-293 ◽  
Author(s):  
Sang Il Lee ◽  
Dong Jin Yoon

Structural health monitoring for carbon nanotube (CNT)/carbon fiber/epoxy composite was verified by the measurement of electrical resistivity. This study has focused on the preparation of carbon nanotube composite sensors and their application for structural health monitoring. The change of the electrical resistance was measured by a digital multimeter under tensile loads. Although a carbon fiber was broken, the electrical connection was still kept by distributed CNT particles in the model composites. As the number of carbon fiber breakages increased, electrical resistivity was stepwise increased. The CNT composites were well responded with fiber damages during the electro-micromechnical test. Carbon nanotube composites can be useful sensors for structural health monitoring to diagnose a structural safety and to prevent a collapse.


Sensors ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 265 ◽  
Author(s):  
Jun Zhang ◽  
Gui Tian ◽  
Adi Marindra ◽  
Ali Sunny ◽  
Ao Zhao

2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000020-000025
Author(s):  
Hélène DEBEDA ◽  
Riadh LAKHMI ◽  
Isabelle FAVRE ◽  
Jonathan ARGILLOS ◽  
Mario MAGLIONE ◽  
...  

Using the association of the low-cost screen-printing technology with the sacrificial layer method, the feasibility of totally released piezoelectric thick-films microceramics of gold electroded PZT type is studied. After the deposition of the sacrificial layer on an alumina substrate and subsequent printing and drying of gold, PZT and gold layers, the final firing is performed at low temperature. This is followed by the releasing step of the Au/PZT/Au in diluted acidic solution. Impedance analysis shows that the electrical properties and electromechanical coefficients of poled PZT thick-films are still lower than those of PZT ceramics. This result is correlated to the high porosity rate of the PZT layer. However these piezoelectric microceramics present a good electromechanical behaviour and can be used as sensors when solicited by vibrations or as actuators to generate vibrations in a structure on which they are bonded. Moreover, the successful fabrication associated to a good electromechanical signature on a metallic test structure suggests Structural Health Monitoring applications.


Sign in / Sign up

Export Citation Format

Share Document