Efficient Machine Learning Model for Intrusion Detection—A Comparative Study

Author(s):  
D. Raman ◽  
G. Vijendar Reddy ◽  
Ashwani Kumar ◽  
Sathish Vuyyala
2018 ◽  
Vol 7 (3.12) ◽  
pp. 1128
Author(s):  
Mohammad Arshad ◽  
Md. Ali Hussain

Real-time network attacks have become an increasingly serious issue to LAN/WAN security in recent years. As the size of the network flow increases, it becomes difficult to pre-process and analyze the network packets using the traditional network intrusion detection tools and techniques. Traditional NID tools and techniques require high computational memory and time to process large number of packets in incremental manner due to limited buffer size. Web intrusion detection is also one of the major threat to real-time web applications due to unauthorized user’s request to web server and online databases. In this paper, a hybrid real-time LAN/WAN and Web IDS model is designed and implemented using the machine learning classifier. In this model, different types of attacks are detected and labelled prior to train the machine learning model. Future network packets are predicted using the trained machine learning classifier for attack prediction. Experimental results are simulated on real-time LAN/WAN network and client-server web application for performance analysis. Simulated results show that the proposed machine learning based attack detection model is better than the traditional statistical and rule based learning models in terms of time, detection rate are concerned.  


2021 ◽  
Vol 12 (2) ◽  
pp. 49-66
Author(s):  
Janmenjoy Nayak ◽  
Bighnaraj Naik ◽  
Pandit Byomakesha Dash ◽  
Danilo Pelusi

Biomedical data is often more unstructured in nature, and biomedical data processing task is becoming more complex day by day. Thus, biomedical informatics requires competent data analysis and data mining techniques for designing decision support system's framework to solve clinical and heathcare-related issues. Due to increasingly large and complex data sets and demand of biomedical informatics research, researchers are attracted towards automated machine learning models. This paper is proposed to design an efficient machine learning model based on fuzzy c-means with meta-heuristic optimizations for biomedical data analysis and clustering. The main contributions of this paper are 1) projecting an efficient machine learning model based on fuzzy c-means and meta-heuristic optimization for biomedical data classification, 2) employing benchmark validation techniques and critical hypothesises testing, and 3) providing a background for biomedical data processing with a view of data processing and mining.


Sign in / Sign up

Export Citation Format

Share Document